Free Newsletters - Space - Defense - Environment - Energy
..
. Farming News .




ICE WORLD
NASA Finds Reducing Salt Is Bad For Glacial Health
by Carol Rasmussen
Pasadena CA (JPL) Dec 17, 2013


Satellite observations from NASA's ICESat-1, which measures how much ice surfaces are rising or falling over time, revealed that Totten Glacier was thinning rapidly.

A new NASA-led study has discovered an intriguing link between sea ice conditions and the melting rate of Totten Glacier, the glacier in East Antarctica that discharges the most ice into the ocean. The discovery, involving cold, extra salty water - brine - that forms within openings in sea ice, adds to our understanding of how ice sheets interact with the ocean, and may improve our ability to forecast and prepare for future sea level rise.

"I was curious why Totten was changing so fast when the glacier just next to it wasn't changing much," said Ala Khazender of NASA's Jet Propulsion Laboratory, Pasadena, Calif., lead author of the new study, published online in the journal Nature Communications.

Combining satellite observations with ocean numerical modeling, Khazender and his colleagues developed a hypothesis that reductions in the volume of brine would increase Totten's thinning and melting. Additional research supported that hypothesis.

Ice loss seen in Antarctica is generally attributed to the well-documented rise in temperature of the surrounding ocean, but scientists are still puzzling out the mechanisms behind the regional variations that they are observing. The new study highlights the key role of processes occurring on small geographic scales in determining how global climate change can affect the stability of ice sheets.

Satellite observations from NASA's ICESat-1, which measures how much ice surfaces are rising or falling over time, revealed that Totten Glacier was thinning rapidly. It currently discharges enough ice into the surrounding ocean to fill Lake Erie in just over a week. The nearby Moscow University Glacier and its floating ice shelf were showing little change. Why the difference? "We were convinced that the answer must be in the ocean," Khazender said.

The ocean around Antarctica is warmer than both the continent's icy surface and the polar air. Ice shelves (the floating front edges of glaciers that extend tens to hundreds of miles offshore) melt more because of contact with ocean water below them than they do because of sunlight.

Melting at the undersides of ice shelves is part of Antarctica's natural water cycle, but when glaciers start melting unusually quickly, it's a sign that something is off balance.

Khazender and his team of colleagues from JPL; UCLA; the University of California, Irvine; and Utrecht University in the Netherlands combined ICESat remote sensing observations from 2003 to 2008 with ocean numerical computer models to seek insights into the interaction between the ice shelves and their ocean basin.

That ocean basin, as elsewhere around Antarctica, contains polynyas (poe-LEEN-yahs), large, annually recurring openings in the winter sea ice cover. Polynya sizes and numbers vary markedly from winter to winter, although there is no overall trend in this region. The computer simulations revealed that these year-to-year variations in the polynyas greatly affected the glacier's melting rate.

In polynyas, large quantities of sea ice form, only to be swept away by the winds that formed the openings in the first place. When seawater freezes it expels its salts, producing a layer of very dense, briny water at the freezing temperature. The cold and dense brine formed in polynyas sinks to the seafloor, where it can flow into the cavities under the ice shelves, just as warmer ocean water could.

The researchers hypothesized that when the cold brine pooled under Totten Ice Shelf, it mixed with the water there, lowering its temperature and slowing the glacier's winter melt rate. If so, a reduction in cold brine would mean the glacier's winter melt rate would increase.

The team then examined a data set of passive microwave measurements from the Defense Meteorological Satellite Program. These showed that in the latter part of the study period, the extent of polynyas (and therefore the production of cold brine) decreased significantly. ICESat observations showed that at the same time, the thinning of Totten Glacier increased, as the team's hypothesis predicted it would.

If there are more winters with reduced polynya extents, Khazender points out, the cavity under Totten can fill with warmer ocean water rather than cold brine. "If that happens, the glacier's flow could be significantly destabilized, causing it to discharge even more ice into the ocean," he said.

"With the widespread changes seen in Antarctic sea ice conditions over the last few years, this process could be affecting other glaciers around Antarctica and the volume of ice they discharge into the ocean," he added.

.


Related Links
ICESat
ECCO2 ocean modeling and data synthesis project
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ICE WORLD
Airborne Radar Looking Through Thick Ice During NASA Polar Campaigns
Greenbelt MD (SPX) Dec 09, 2013
The bedrock hidden beneath the thick ice sheets covering Greenland and Antarctica has intrigued researchers for years. Scientists are interested in how the shape of this hidden terrain affects how ice moves - a key factor in making predictions about the future of these massive ice reservoirs and their contribution to sea level rise in a changing climate. NASA has been monitoring Antarctic ... read more


ICE WORLD
Brazil, China to make new satellite launch in 2014

Mitsubishi Electric Awarded Contract for GOSAT-2 Satellite System

CryoSat Tracks Storm Surge

Juno Gives Starship-Like View Of Earth Flyby

ICE WORLD
USAF Awards Lockheed Martin Contract to Complete Two More GPS III Satellites

Galileo achieves its first airborne tracking

'Smart' wig navigates by GPS, monitors brainwaves

CIA, Pentagon trying to hinder construction of GLONASS stations in US

ICE WORLD
Young tropical forests contribute little to biodiversity conservation

More logging, deforestation may better serve climate in some areas

Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests

ICE WORLD
Biorefinery could put South Australian forest industry back on growth track

Ground broken on $6 million Hungarian farm biogas plant

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

ICE WORLD
Prothea advised on purchase of 6.7 MW solar photovoltaic farms operating in Italy

Solar Energy Solidarity donates products for three solar installations in Africa

GE Energy Financial Services Progresses In Solar

DEK Solar Continues Winning Streak

ICE WORLD
Wind energy: TUV Rheinland certifies PowerWind wind turbines

Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

Ethiopia spearheads green energy in sub-Saharan Africa

ICE WORLD
Top German court throws out suit over giant coal mine

Australian coal projects at risk of being 'stranded'

China mine explosion kills 21

Coal rush ravages Indonesian Borneo

ICE WORLD
Ancient bones offer peek at history of cats in China

Former China death row inmate awarded court payout

Rights abuses persist in China despite plan to scrap camps: Amnesty

Human rights a matter for China, not US: Beijing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement