Energy News  
STELLAR CHEMISTRY
NASA-Funded Sounding Rocket Solves One Cosmic Mystery, Reveals Another
by Staff Writers
Wallops Island VA (SPX) Sep 29, 2016


The Diffuse X-ray emission from the Local galaxy, or DXL, sounding rocket launched from White Sands Missile Range in New Mexico on Dec. 13, 2012, to study the source of certain X-rays observed near Earth. Image courtesy White Sands Missile Range, Visual Information Branch. For a larger version of this image please go here.

In the last century, humans realized that space is filled with types of light we can't see - from infrared signals released by hot stars and galaxies, to the cosmic microwave background that comes from every corner of the universe. Some of this invisible light that fills space takes the form of X-rays, the source of which has been hotly contended over the past few decades.

It wasn't until the flight of the DXL sounding rocket, short for Diffuse X-ray emission from the Local galaxy, that scientists had concrete answers about the X-rays' sources. In a new study, published Sept. 23, 2016, in the Astrophysical Journal, DXL's data confirms some of our ideas about where these X-rays come from, in turn strengthening our understanding of our solar neighborhood's early history.

But it also reveals a new mystery - an entire group of X-rays that don't come from any known source. The two known sources of X-ray emission are the solar wind, the sea of solar material that fills the solar system, and the Local Hot Bubble, a theorized area of hot interstellar material that surrounds our solar system.

"We show that the X-ray contribution from the solar wind charge exchange is about forty percent in the galactic plane, and even less elsewhere," said Massimiliano Galeazzi, an astrophysicist at the University of Miami and an author on the study. "So the rest of the X-rays must come from the Local Hot Bubble, proving that it exists."

However, DXL also measured some high-energy X-rays that couldn't possibly come from the solar wind or the Local Hot Bubble.

"At higher energies, these sources contribute less than a quarter of the X-ray emission," said Youaraj Uprety, lead author on the study and an astrophysicist at University of Miami at the time the research was conducted. "So there's an unknown source of X-rays in this energy range."

In the decades since we first discovered the X-ray emission that permeates space, three main theories have been bandied about to explain its origins. First, and quickly ruled out, was the idea that these X-rays are a kind of background noise, coming from the distant reaches of the universe. Our galaxy has lots of neutral gas that would absorb X-rays coming from distant sources - meaning that these X-rays must originate somewhere near our solar system.

So what could produce this kind of X-ray so close to our solar system? Scientists theorized that there was a huge bubble of hot ionized gas enveloping our solar system, with electrons energetic enough that they could release X-rays like this. They called this structure the Local Hot Bubble.

"We think that around 10 million years ago, a supernova exploded and ionized the gas of the Local Hot Bubble," said Galeazzi. "But one supernova wouldn't be enough to create such a large cavity and reach these temperatures - so it was probably two or three supernova over time, one inside the other."

The Local Hot Bubble was the prevailing theory for many years. Then, in the late 1990s, scientists discovered another source of X-rays - a process called solar wind charge exchange.

Our sun is constantly releasing solar material in all directions, a flow of charged particles called the solar wind. Like the sun, the solar wind is made up of ionized gas, where electrons and ions have separated. This means that the solar wind can carry electric and magnetic fields.

When the charged solar wind interacts with pockets of neutral gas, where the electrons and ions are still tightly bound together, it can pick up electrons from these neutral particles, exciting them. As these electrons settle back into a stable state, they lose energy in the form of X-rays - the same type of X-rays that had been thought to come from the Local Hot Bubble.

The discovery of this solar wind X-ray source posed a problem for the Local Hot Bubble theory, since the only indication that it existed were these X-ray observations. But if the hot bubble did exist, it could tell us a lot about how our corner of the galaxy formed.

"Identifying the X-ray contribution of the Local Hot Bubble is important for understanding the structure surrounding our solar system," said Uprety, who is now an astrophysicist at Middle Tennessee State University. "It helps us build better models of the interstellar material in our solar neighborhood."

Distinguishing between X-rays from the solar wind and X-rays from the Local Hot Bubble was a challenge - that's where DXL comes in. DXL flew on what's called a sounding rocket, which flies for some 15 minutes. These few minutes of observing time above Earth's atmosphere are valuable, since Earth's blocks most of these X-rays, making observations like this impossible from the ground. Such short-duration sounding rockets provide a relatively inexpensive way to gather robust space observations.

DXL is the second spacecraft to measure the X-rays in question, but unlike the previous mission - a satellite called ROSAT - DXL flew at a time when Earth was passing through something called the helium-focusing cone. The helium-focusing cone is a region of space where neutral helium is several times denser than in the rest of the inner solar system.

"The solar system is moving through interstellar space at about 15 miles per second," said Uprety. "This space is filled with hydrogen and helium. The helium is a little heavier, so it carves around the sun to form a tail."

Because solar wind charge exchange is dependent on having lots of neutral material to interact with, measuring X-rays in the helium-focusing cone could help scientists definitively determine how much of the X-ray emission comes from the solar wind, and how much - if any - comes from the Local Hot Bubble.

DXL's data revealed that about forty percent of most observed X-rays come from the solar wind. But in higher energy ranges, some X-rays are still unexplained. DXL's observations show that less than a quarter of the X-ray emission at higher energy levels comes from the solar wind, and the Local Hot Bubble isn't a good explanation either.

"The temperature of the Local Hot Bubble is not high enough to produce X-rays in this energy range," said Uprety. "So we're left with an open question on the source of these X-rays."

DXL launched from White Sands Missile Range in New Mexico on Dec. 13, 2012. DXL is supported through NASA's Sounding Rocket Program at the agency's Wallops Flight Facility at Wallops Island, Virginia, which is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA's Heliophysics Division manages the sounding-rocket program for the agency.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Sounding Rocket at NASA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Cosmic Dust Demystified by British Researchers
Leeds, UK (SPX) Sep 28, 2016
The solar system is a dusty environment, with trillions of cosmic dust particles left behind by comets and asteroids that orbit the sun. All this dust forms a relatively dense cloud through which the Earth travels, sweeping up the interplanetary dust particles very effectively. Besides providing substantive information about the atmospheres of other planets, these particles can impact radi ... read more


STELLAR CHEMISTRY
DG's Basemap expanded to include 250M square kilometers at 30cm

Van Allen probes spot electron rainfall in atmosphere

New partnership with DigitalGlobe advances research innovation locally, worldwide

Vega to launch ESA's wind mission

STELLAR CHEMISTRY
US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

Lockheed gets $395 million GPS III Space Vehicle contract modification

2 SOPS bids farewell to miracle satellite

STELLAR CHEMISTRY
Gambia announces ban on imported timber, but expert sceptic

Amazon forest fire threatens natives, wildlife in Peru

Borneo loggers swap chainsaws for cheap healthcare

Indonesia, EU, announce historic deal on timber trade

STELLAR CHEMISTRY
New findings by Stanford chemists could lead to greener methanol production

Liquid Manure Volume Reduced by Half

Can jet fuel be grown on trees?

Boskalis tests sustainable wood-based biofuel for marine fleet

STELLAR CHEMISTRY
Columbia Chemists Find Key to Manufacturing More Efficient Solar Cells

OPDE begins construction of a new 5MWp solar farm in the UK

Huawei Solar expands European supply center

Stacked Solar Module achieves unprecedented efficiency at 17.8 Percent

STELLAR CHEMISTRY
Wind turbines a risk to birds living as far as 100 miles away

SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

GM commits to 100 percent renewables

STELLAR CHEMISTRY
World Bank secretly finances Asian 'coal boom,' group says

Chinese coal accident kills 18, traps 2: media

Alberta taking a step away from coal

Court dismisses challenge to Adani's Australia mine

STELLAR CHEMISTRY
Tibet's first football club aims at unity, struggles for Chinese players

Hong Kong marks 2nd anniversary of 'Umbrella Revolution'

Hong Kong leader calls for unity with China as protesters gather

The rebel Hong Kong lawmakers challenging Beijing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.