Energy News  
NANO TECH
NJIT Prof Offers New Desalination Process Using Carbon Nanotubes

This is NJIT professor Somenath Mitra working in his lab. Credit: New Jersey Institute of Technology
by Staff Writers
Newark NJ (SPX) Mar 16, 2011
A faster, better and cheaper desalination process enhanced by carbon nanotubes has been developed by NJIT Professor Somenath Mitra. The process creates a unique new architecture for the membrane distillation process by immobilizing carbon nanotubes in the membrane pores. Conventional approaches to desalination are thermal distillation and reverse osmosis.

"Unfortunately the current membrane distillation method is too expensive for use in countries and municipalities that need potable water," said Mitra. "Generally only industry, where waste heat is freely available, uses this process. However, we're hoping our new work will have far-reaching consequences bringing good, clean water to the people who need it."

The process is outlined in "Water Desalination Using Carbon Nanotube Enhanced Membrane Distillation," by Mitra and his research team in the current issue of the American Chemistry Society's Applied Materials and Interfaces. Doctoral students Ken Gethard and Ornthida Sae-Khow worked on the project. Mitra is chairman of the department of chemistry and environmental science.

Membrane distillation is a water purification process in which heated salt water passes through a tube-like membrane, called a hollow fiber. "Think of your intestines," said Mitra. "It's designed in such a way that nutrition passes through but not the waste." Using a similar structure, membrane distillation allows only water vapor to pass through the walls of the hollow tube, but not the liquid. When the system works, potable water emerges from the net flux of water vapor which moves from the warm to the cool side. At the same time, saline or salt water passes as body waste would through the fiber.

Membrane distillation offers several advantages. It's a clean, non-toxic technology and can be carried out at 60-90�".5C. This temperature is significantly lower than conventional distillation which uses higher temperatures. Reverse osmosis uses relatively high pressure.

Nevertheless, membrane distillation is not trouble free. It is costly and getting the membrane to work properly and efficiently can be difficult. "The biggest challenge," said Mitra, "is finding appropriate membranes that encourage high water vapor flux but prevent salt from passing through."

Mitra's new method creates a better membrane by immobilizing carbon nanotubes in the pores. The novel architecture not only increases vapor permeation but also prevents liquid water from clogging the membrane pores. Test outcomes show dramatic increases in both reductions in salt and water production. "That's a remarkable accomplishment and one we are proud to publish," said Mitra.

Another advantage is that the new process can facilitate membrane distillation at a relatively lower temperature, higher flow rate and higher salt concentration. Compared to a plain membrane, this new distillation process demonstrates the same level of salt reduction at a 20�".5C lower temperature, and at a flow rate six times greater.

"Together these benefits lead to a greener process which could make membrane distillation economically competitive with existing desalination technologies and we hope could provide potable water where it is most needed," said Mitra.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
New Jersey Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Probing Atomic Chicken Wire
Boston MA (SPX) Mar 09, 2011
Graphene - a sheet of carbon atoms linked in a hexagonal, chicken wire structure - holds great promise for microelectronics. Only one atom thick and highly conductive, graphene may one day replace conventional silicon microchips, making devices smaller, faster and more energy-efficient. In addition to potential applications in integrated circuits, solar cells, miniaturized bio devices and ... read more







NANO TECH
DLR Releases Satellite Images Of Japanese Disaster Area

NASA Images Tsunami Impact Across Northeastern Japan

OSI Geospatial to supply New Zealand navy

NASA And Other Satellites Keeping Busy With This Week's Severe Weather

NANO TECH
N. Korea rejects Seoul's plea to stop jamming signals

Rayonier's GIS Strengthens Asset Management Capability

Space Team Improves GPS Capability For Warfighters

SSTL's European GNSS Payload Passes Design Review

NANO TECH
Colombian Amazon village bans prying tourists

US scientists recruit crocodiles to save wetlands

Trading places: Kenyans swap carbon roles to save forest

Scientists Study Control Of Invasive Tree In Western US

NANO TECH
Full Harvest Of Ford Greener Fuel Solutions

Solazyme And Dow Form Alliance

Enzymes From Garden Compost Could Favour Bioethanol Production

Top Advanced Biofuels Groups Meet In Washington

NANO TECH
XsunX Signs CIGSolar Purchase And License Commitment With Energy Company

JinkoSolar Joins PV CYCLE To Promote Cleaner Energy

Energy Storage Initiative

Power-One Launches Three-Phase String Inverter For North American Market

NANO TECH
American Electric Technologies Announces Deployment With Emergya Wind Technologies

GL Garrad Hassan Delivers Wind Map Of Lebanon

Eon to build fifth U.K. offshore wind farm

GL Garrad Hassan Launches Onshore Wind Resource Mapping For UK

NANO TECH
Japan crisis must not spark rush to fossil fuels: Sweden

China, US agree to cooperate on mine safety

China says over 2,400 dead in coal mines in 2010

NANO TECH
Tibet exile MPs oppose Dalai Lama retirement

Dalai Lama pleads for right to 'retire'

Tibet exile MPs to debate Dalai Lama 'retirement'

Tibetans confronted by life after Dalai Lama


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement