Energy News  
BIO FUEL
Nagoya University researchers break down plastic waste
by Staff Writers
Nagoya, Japan (SPX) May 30, 2017


Design of a sterically confined bipyridine-ruthenium (Ru) framework allows controlled confinement of adsorbed H2 and its delivery to inert amides enabling catalytic hydrogenation of a wide range of amide bonds. Cleavage of both C=O and C-N lactam bonds achieved by activation of a single precatalyst. Image courtesy Nagoya Univesity.

What to do proteins and Kevlar have in common? Both feature long chain molecules that are strung together by amide bonds. These strong chemical bonds are also common to many other naturally occurring molecules as well as man-made pharmaceuticals and plastics.

Although amide bonds can give great strength to plastics, when it comes to their recycling at a later point, the difficultly of breaking these bonds usually prevents recovery of useful products. Catalysts are widely used in chemistry to help speed up reactions, but breaking the kinds of amide bonds in plastics, such as nylon, and other materials requires harsh conditions and large amounts of energy.

Building on their previous work, a research team at Nagoya University recently developed a series of organometallic ruthenium catalysts to break down even the toughest amide bonds effectively under mild conditions.

"Our previous catalysts could hydrogenate most amide bonds, but the reactions needed a long time at high temperature and high pressure. This new ruthenium catalyst can hydrogenate difficult substrates under much milder conditions," says lead author Takashi Miura.

Hydrogenation is the key step leading to breakdown of amide bonds. The catalyst features a ruthenium atom supported in an organic framework. This ruthenium atom can adsorb hydrogen and deliver it to the amide bond to initiate the breakdown.

The team probed the position of hydrogen on the catalyst in the reaction pathway and modified the shape of the supporting framework. By making sure that the hydrogen molecule was is the best possible position for interaction with amide bonds, the team achieved much more effective hydrogenation.

Group leader Susumu Saito says, "The changes we made to the catalyst allowed some tricky amide bonds to be selectively cleaved for the first time. This catalyst has great potential for making designer peptides for pharmaceutics and could also be used to recover materials from waste plastics to help realize an anthropogenic chemical carbon cycle."

The article, "Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework" was published in Scientific Reports at DOI: 10.1038/s41598-017-01645-z

BIO FUEL
Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
Los Angeles CA (SPX) May 26, 2017
Plant biologists and biochemists from UCLA, UC Berkeley and UC San Francisco have produced a gold mine of data by sequencing the genome of a green alga called Chromochloris zofingiensis. Scientists have learned in the past decade that the tiny, single-celled organism could be used as a source of sustainable biofuel and that it produces a substance called astaxanthin, which may be useful fo ... read more

Related Links
Nagoya University
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

SES-14 integrates NASA ultraviolet space spectrograph

NASA's CYGNSS Satellite Constellation Begins Public Data Release

BIO FUEL
Japan launches satellite in bid for super accurate GPS system

exactEarth Broadens Small Vessel Tracking Offering

Chinese firms develop BeiDou navigation applications

2 SOPS says goodbye to GPS satellite

BIO FUEL
Canada provides Can$867 mn to beleaguered softwood sector

Forensic analysis of wood's chemical signatures could curb illegal logging

PNG expedition discovers largest trees at extreme altitudes

Amazon rainforest may be more resilient to deforestation than previously thought

BIO FUEL
Cold conversion of food waste into renewable energy and fertilizer

Nagoya University researchers break down plastic waste

A more energy-efficient catalytic process to produce olefins

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

BIO FUEL
New clean energy joint venture on Fiji Islands

Replacing coal with solar can save lives and money

Artificial transpiration for solar water purification

Paris withdrawal sets business world at odds with Trump

BIO FUEL
ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

U.S. states taking up wind energy mantle

Scientists track porpoises to assess impact of offshore wind farms

BIO FUEL
India's Adani to start work on mine near Great Barrier Reef

From coal miner to writer of China's hit TV show

Gas leak kills 18 miners in central China

India's coal plant plans conflict with climate commitments

BIO FUEL
China rights lawyer charged with subversion

Chinese skinny-dippers defy public morals

Thousands gather at Hong Kong Tiananmen vigil

US returns criminal suspect to China









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.