Energy News  
NANO TECH
Nature-inspired nanotubes that assemble themselves, with precision
by Staff Writers
Berkeley CA (SPX) Mar 29, 2016


Precision meets nano-construction, as seen in this illustration. Berkeley Lab scientists discovered a peptoid composed of two chemically distinct blocks (shown in orange and blue) that assembles itself into nanotubes with uniform diameters. Image courtesy Berkeley Lab. For a larger version of this image please go here.

When it comes to the various nanowidgets scientists are developing, nanotubes are especially intriguing. That's because hollow tubes that have diameters of only a few billionths of a meter have the potential to be incredibly useful, from delivering cancer-fighting drugs inside cells to desalinating seawater.

But building nanostructures is difficult. And creating a large quantity of nanostructures with the same trait, such as millions of nanotubes with identical diameters, is even more difficult. This kind of precision manufacturing is needed to create the nanotechnologies of tomorrow.

Help could be on the way. As reported online in the journal Proceedings of the National Academy of Sciences, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a family of nature-inspired polymers that, when placed in water, spontaneously assemble into hollow crystalline nanotubes.

What's more, the nanotubes can be tuned to all have the same diameter of between five and ten nanometers, depending on the length of the polymer chain.

The polymers have two chemically distinct blocks that are the same size and shape. The scientists learned these blocks act like molecular tiles that form rings, which stack together to form nanotubes up to 100 nanometers long, all with the same diameter.

"This points to a new way we can use synthetic polymers to create complex nanostructures in a very precise way," says Ron Zuckermann, who directs the Biological Nanostructures Facility in Berkeley Lab's Molecular Foundry, where much of this research was conducted.

Several other Berkeley Lab scientists contributed to this research, including Nitash Balsara of the Materials Sciences Division and Ken Downing of the Molecular Biophysics and Integrated Bioimaging Division.

"Creating uniform structures in high yield is a goal in nanotechnology," adds Zuckermann. "For example, if you can control the diameter of nanotubes, and the chemical groups exposed in their interior, then you can control what goes through - which could lead to new filtration and desalination technologies, to name a few examples."

The research is the latest in the effort to build nanostructures that approach the complexity and function of nature's proteins, but are made of durable materials. In this work, the Berkeley Lab scientists studied a polymer that is a member of the peptoid family. Peptoids are rugged synthetic polymers that mimic peptides, which nature uses to form proteins. They can be tuned at the atomic scale to carry out specific functions.

For the past several years, the scientists have studied a particular type of peptoid, called a diblock copolypeptoid, because it binds with lithium ions and could be used as a battery electrolyte.

Along the way, they serendipitously found the compounds form nanotubes in water. How exactly these nanotubes form has yet to be determined, but this latest research sheds light on their structure, and hints at a new design principle that could be used to build nanotubes and other complex nanostructures.

Diblock copolypeptoids are composed of two peptoid blocks, one that's hydrophobic one that's hydrophilic. The scientists discovered both blocks crystallize when they meet in water, and form rings consisting of two to three individual peptoids. The rings then form hollow nanotubes.

Cryo-electron microscopy imaging of 50 of the nanotubes showed the diameter of each tube is highly uniform along its length, as well as from tube to tube. This analysis also revealed a striped pattern across the width of the nanotubes, which indicates the rings stack together to form tubes, and rules out other packing arrangements. In addition, the peptoids are thought to arrange themselves in a brick-like pattern, with hydrophobic blocks lining up with other hydrophobic blocks, and the same for hydrophilic blocks.

"Images of the tubes captured by electron microscopy were essential for establishing the presence of this unusual structure," says Balsara. "The formation of tubular structures with a hydrophobic core is common for synthetic polymers dispersed in water, so we were quite surprised to see the formation of hollow tubes without a hydrophobic core."

X-ray scattering analyses conducted at beamline 7.3.3 of the Advanced Light Source revealed even more about the nanotubes' structure. For example, it showed that one of the peptoid blocks, which is usually amorphous, is actually crystalline.

Remarkably, the nanotubes assemble themselves without the usual nano-construction aids, such as electrostatic interactions or hydrogen bond networks.

"You wouldn't expect something as intricate as this could be created without these crutches," says Zuckermann. "But it turns out the chemical interactions that hold the nanotubes together are very simple. What's special here is that the two peptoid blocks are chemically distinct, yet almost exactly the same size, which allows the chains to pack together in a very regular way. These insights could help us design useful nanotubes and other structures that are rugged and tunable - and which have uniform structures."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nano-enhanced textiles clean themselves with light
Melbourne, Australia (SPX) Mar 28, 2016
A spot of sunshine is all it could take to get your washing done, thanks to pioneering nano research into self-cleaning textiles. Researchers at RMIT University in Melbourne, Australia, have developed a cheap and efficient new way to grow special nanostructures - which can degrade organic matter when exposed to light - directly onto textiles. The work paves the way towards nano-enhanced te ... read more


NANO TECH
Russia Prepared to Offer Launch Options for Morocco's Satellite

Jason-3 Begins Mapping Oceans, Sees Ongoing El Nino

Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

NANO TECH
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

NANO TECH
Drought alters recovery of Rocky Mountain forests after fire

Recycling pecan wood for commercial growing substrates

China's forest recovery shows hope for mitigating global climate change

No logging at protected Tasmanian forest: Australia

NANO TECH
ORNL invents tougher plastic with 50 percent renewable content

Dung, offal make clean gas at Costa Rica slaughterhouse

The flexible way to greater energy yield

Smaller, cheaper microbial fuel cells turn urine into electricity

NANO TECH
Solar fuels: A refined protective layer for the 'artificial leaf'

New ORNL method could unleash solar power potential

Australia invests $760 million in technologies to fight climate change

Lockheed Martin forms energy group

NANO TECH
Developing nations became top investors in renewables in 2015: UN

Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Re-thinking renewable energy predictions

NANO TECH
China mine accident kills 19: Xinhua

Coal fading from U.S. energy landscape

Chinese coal miners strike over wages, layoffs

U.S. coal exports on the decline; As JPMorgan sounds warning

NANO TECH
Waisting time: paper-thin campaign raises questions in China

Self-destruction and harsh realities at Art Basel Hong Kong

Missing Chinese journalist has been detained: lawyer

Rights groups slam China over missing journalist









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.