Energy News  
TECH SPACE
New approach doubles 3-D resolution of fluorescence microscopy
by Staff Writers
Washington DC (SPX) Aug 15, 2016


By adding a third objective lens, researchers were able to capture previously neglected fluorescence, improving image resolution in three dimensions. The schematic on the right shows the new approach as applied to a type of light-sheet microscopy. Image courtesy Yicong Wu, National Institute of Biomedical Imaging and Bioengineering. For a larger version of this image please go here.

Researchers have developed a new fluorescence microscopy approach that significantly improves image resolution by acquiring three views of a sample at the same time. Their new method is particularly useful for watching the dynamics of biological processes, which can provide insights into how healthy cells work and what goes wrong when diseases occur.

In The Optical Society's journal for high impact research, Optica, the researchers apply their multi-view technique in two microscopy modes and use it to image several types of biological samples. For both modes, the researchers demonstrated a volumetric resolution of up to 235 by 235 by 340 nanometers, double the volumetric resolution of traditional methods.

Biologists commonly use fluorescence microscopy to study everything from embryo development to the intricate processes within living cells. However, most fluorescence microscopy methods fail to capture much of the fluorescence emitted from the sample, which not only represents lost information but also reduces image resolution.

"In our work, we captured this previously neglected fluorescence and fused it with the traditional views used in conventional microscopy," said Yicong Wu, staff scientist at the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Maryland, USA, and first author of the Optica paper. "This increases resolution without compromising either temporal resolution or adding additional light to the sample."

Adding a third objective lens
The new multi-view approach helps improve a technique the researchers previously developed called dual-view plane illumination microscopy (diSPIM). Scientists around the world employ commercial versions of diSPIM, which uses a thin sheet of light and two objectives lenses to excite and detect fluorescence.

"The main motivation of this new research was that the resolution in diSPIM was limited by the numerical aperture of the upper lenses, and fluorescence emitted in the direction of the coverslip is not captured," explained Hari Shroff, leader of the research team. "We reasoned that if we could simultaneously image this neglected signal by adding a higher numerical aperture lens that acquired the bottom view, then we could boost the lateral resolution."

In the improved diSPIM microscopy technique, each light sheet is tilted at a 45-degree angle relative to an additional lower objective lens. In its current design, the researchers swept the lower objective's plane of focus through the sample to image the previously unused fluorescence, but this mechanical scanning could be replaced with a passive optic in future versions of the microscope. Using the multi-view approach improved the lateral, or horizontal, resolution of diSPIM to about 235 nm.

The researchers also implemented the new technique in wide-field mode by scanning the three objectives through a sample simultaneously to produce three individual 3D views. With this mode, the multi-view method improved axial, or Z-axis, resolution, to about 340 nm, an increase of 45%.

Merging three views into one
Whether acquired in wide-field or light-sheet mode, the three views must be precisely aligned and also cleaned up with an image processing technique known as deconvolution.

"One helpful trick was to deconvolve each view first to increase image quality, contrast, and so forth, which then allowed accurate registration of the three views," said Wu. "In wide-field mode, we further aided registration of the images by adding fluorescent beads to the samples as point of reference." He added that collaboration with Patrick La Riviere's research group at the University of Chicago was essential in thinking through and testing this deconvolution method.

The researchers demonstrated the multi-view technique by imaging biological samples and were able to see detailed features not typically observable. For example, the wide-field multi-view microscope clearly resolved the spherical protein shell present when Bacillus subtilis forms a spore and also allowed the researchers to observe the dynamics of organelles inside cells. In light-sheet mode, they clearly saw the 3D dynamic nature of tiny protrusions on living white blood cells when they acquired 150 triple-view images over 40 minutes.

Although other methods have been used to capture multiple views sequentially, this new method improves spatial resolution without introducing additional illumination or compromising temporal resolution relative to conventional imaging. This is important because additional light can be damaging, even deadly to living cells, and the temporal resolution is needed to capture fast processes.

The research team is now exploring additional biological applications for the new system and is working to extend the method to other microscope modalities, such as confocal microscopy.

Paper: Y. Wu, P. Chandris, P.W. Winter, E.Y. Kim, V. Jaumouille, A. Kumar, M. Guo, J.M. Leung, C. Smith, I. Rey-Suarez, H. Liu, C.M. Waterman, K.S. Ramamurthi, P. LaRiviere, H. Shroff, "Simultaneous multi-view capture and fusion improves spatial resolution in wide-field and light-sheet microscopy," Optica, 3, 8, 897 (2016). DOI: 10.1364/optica.3.000897.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Tailored AFM probes created via 3-D direct laser writing
Washington DC (SPX) Aug 10, 2016
Atomic force microscopy (AFM) is a technique that allows researchers to analyze surfaces at the atomic scale, and it's based on a surprisingly simple concept: A sharp tip on a cantilever "senses" the topography of samples. While this technique has been successfully used for more than 30 years, and you can easily buy standard micromachined probes for experiments, standard-sized tips aren't ... read more


TECH SPACE
Iran, Roscosmos Discuss Price of Remote-Sensing Satellite Construction, Launch

Study Maps Hidden Water Pollution in U.S. Coastal Areas

Foraging strategies of smallest seals revealed in first ever satellite tracking study

Russia Plans to Use Atmospheric Satellite 'Sova' to Develop North, Siberia

TECH SPACE
GPS jamming: Keeping ships on the 'strait' and narrow

China's satnav industry grows 29 pct in 2015

Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

TECH SPACE
A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

Early snowmelt reduces forests' atmospheric CO2 uptake

TECH SPACE
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

TECH SPACE
Installation of 2nd MW-scale sun2live solar power plant in Antigua has commenced

Material for polymer solar cells may lend itself to large-area processing

Tiny high-performance solar cells turn power generation sideways

ORNL optimizes formula for cadmium-tellurium solar cells

TECH SPACE
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

TECH SPACE
Moody's: Poland to remain dependent on coal

11 dead after fire at illegal Chinese coal mine

Sweden backs Vattenfall exit from German coal unit

Federal coal report is propaganda, House Republican says

TECH SPACE
Chinese ID mix-up leaves dead man walking

China activist tried for subversion, 4th case in 4 days

Tradition faces modernity at Tibetan horse festival

Banned election candidates lead Hong Kong independence rally









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.