Energy News  
TECH SPACE
New composite material that can cool itself down under extreme temperatures
by Staff Writers
Nottingham UK (SPX) Oct 29, 2018

Illustrates an approach of multiple parallel-aligned module cell network to generate a collective operational unit.

A cutting-edge material, inspired by nature, that can regulate its own temperature and could equally be used to treat burns and help space capsules withstand atmospheric forces is under development at the University of Nottingham.

The research paper, Temperature - dependent polymer absorber as a switchable state NIR reactor, is published in the journal Scientific Reports Friday 26 October.

"A major challenge in material science is to work out how to regulate man-made material temperature as the human body can do in relationship to its environment," explains lead author Dr Mark Alston, Assistant Professor in Environmental Design, from the Faculty of Engineering.

The research used a network of multiple microchannels with active flowing fluids (fluidics) as a method and proof of concept to develop a thermally-functional material made of a synthetic polymer. The material is enhanced with precise control measures that can switch conductive states to manage its own temperature in relationship to its environment.

"This bio-inspired engineering approach advances the structural assembly of polymers for use in advanced materials. Nature uses fluidics to regulate and manage temperature in mammals and in plants to absorb solar radiation though photosynthesis and this research used a leaf-like model to mimic this function in the polymer."

Dr Alston adds: "This approach will result in an advanced material that can absorb high solar radiation, as the human body can do, to cool itself autonomously whatever the environment it is placed in. A thermally-functional material could be used as a heat regulation system for burn injuries to cool skin surface temperature and monitor and improve healing."

This kind of heat flow management could also prove invaluable in space flight where high solar loads can cause thermal stresses on the structural integrity of space capsules.

By regulation of the structural material temperature of the vehicle, this will not only advance structural properties but could also generate useful power. This thermal energy could be removed from the re-circulated fluid system to be stored in a reservoir tank on board the capsule. Once captured, the energy could be converted into electrical energy or to heat water for use by the crew.

The experimental side of this research is laboratory-based and has been developed in collaboration with UK Government research institute: Scientific Research Facilities Council (SRFC). The next steps for the research are to secure funding for a demonstrator scale-up to present to aerospace manufacturing and to identify an industrial partner.

Research paper


Related Links
University of Nottingham
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Novel material could make plastic manufacturing more energy-efficient
Washington DC (SPX) Oct 26, 2018
An innovative filtering material may soon reduce the environmental cost of manufacturing plastic. Created by a team including scientists at the National Institute of Standards and Technology (NIST), the advance can extract the key ingredient in the most common form of plastic from a mixture of other chemicals - while consuming far less energy than usual. The material is a metal-organic framework (MOF), a class of substances that have repeatedly demonstrated a talent for separating individual hydro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Earth's core is definitely solid, study finds

DigitalGlobe expands NASA partnership with sole-source EO data contract

African smoke-cloud connection target of NASA airborne flights

Innovative tool allows continental-scale water, energy, and land system modeling

TECH SPACE
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

TECH SPACE
Saving the precious wood of Gabon's forests from illegal logging

Salmon graveyard gives rise to forest in Alaska

Brazil's Amazon at risk if Bolsonaro wins presidency: ecologists

The population of a tropical tree increases mostly in places where it is rare

TECH SPACE
Efficient electrochemical cells for CO2 conversion

Brazilian biomass-powered electricity expands 11 percent over last year

New catalyst opens door to CO2 capture in conversion of coal to liquid fuels

Sebigas Awarded For The Construction Of The Biggest Biogas Plant In The Americas

TECH SPACE
China's solar subsidy cuts will help US developers to revive projects and jobs, says GlobalData

Poor Ivory Coast pupils' ray of hope: solar backpacks

How graphite is lighting the way to a solar future

New material, manufacturing process use sun's heat for cheaper renewable electricity

TECH SPACE
Extreme weather forcing renewable operators to strengthen project economics

Wind farms and reducing hurricane precipitation

Ingeteam opens new high-tech production facility for electrical wind turbine components in India

Wind turbine installation vessel launching and construction supervision contract

TECH SPACE
Thousands join German forest demo after court reprieve

Weathering rates for mined lands exponentially higher than unmined sites

German police suspend anti-coal evictions after journalist dies

Japan's Marubeni to slash coal-fired power capacity

TECH SPACE
China's president inaugurates Hong Kong-mainland mega bridge

Top Chinese official in Macau dies in fall from home: Beijing

China VP pays highest-level visit to Israel since 2000

Date set for mega Hong Kong-China bridge opening









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.