. Energy News .




CIVIL NUCLEAR
New nuclear fuel-rod cladding could lead to safer power plants
by David Chandler for MIT News Office
Boston MA (SPX) Jul 26, 2013


Nuclear fuel rods are made of hundreds of small pellets of enriched uranium placed end-to-end inside hollow tubes of zircaloy that are about a half-inch across. The tubes are filled with inert helium gas to improve the heat conduction from the pellets to cladding that is cooled by the water that circulates outside the tubes. These tubes are then packed together in bundles that are inserted into the reactor core, where they heat water to produce steam to drive a turbine generator to produce electricity.

In the aftermath of Japan's earthquake and tsunami in March 2011, the Fukushima Daiichi nuclear plant was initially driven into shutdown by the magnitude 9.0 quake; its emergency generators then failed because they were inundated by the tsunami. But the greatest damage to the complex, and the greatest release of radiation, may have been caused by explosions of hydrogen gas that built up inside some of the reactors.

That hydrogen buildup was the result of hot steam coming into contact with overheated nuclear fuel rods covered by a cladding of zirconium alloy, or "zircaloy" - the material used as fuel-rod cladding in all water-cooled nuclear reactors, which constitute more than 90 percent of the world's power reactors. When it gets hot enough, zircaloy reacts with steam to produce hydrogen, a hazard in any loss-of-coolant nuclear accident.

A team of researchers at MIT is developing an alternative that could provide similar protection for nuclear fuel, while reducing the risk of hydrogen production by roughly a thousandfold. Tests of the new cladding material, a ceramic compound called silicon carbide (SiC), are described in a series of papers appearing in the journal Nuclear Technology.

"We are looking at all sides of the issue, regarding replacing the metallic cladding with ceramic," says Mujid Kazimi, the TEPCO Professor of Nuclear Engineering at MIT, who is senior author of the papers. Because of the harsh environment fuel rods are exposed to - heat, steam, and neutrons that emanate from nuclear reactions - extensive further testing will be needed on any new cladding for use in commercial reactors, Kazimi says.

SiC is "very promising, but not at the moment ready for adoption" by the nuclear industry, he adds.

Other groups have suggested the use of SiC for cladding, but the material had never been subjected to the detailed tests and simulations that the MIT team carried out. Kazimi and his colleagues not only tested the material's response under normal operating conditions, with temperatures of 300 degrees Celsius (572 degrees Fahrenheit), but also under the more extreme conditions of an accident, with temperatures up to 1500 C (2732 F).

Nuclear fuel rods are made of hundreds of small pellets of enriched uranium placed end-to-end inside hollow tubes of zircaloy that are about a half-inch across. The tubes are filled with inert helium gas to improve the heat conduction from the pellets to cladding that is cooled by the water that circulates outside the tubes. These tubes are then packed together in bundles that are inserted into the reactor core, where they heat water to produce steam to drive a turbine generator to produce electricity.

To test SiC cladding under normal operating conditions, the MIT team used a three-layer cladding design that features a middle layer made of a composite of SiC fibers reinforced with more SiC. The tubes were tested inside MIT's research reactor in special loops that replicate the coolant temperature and chemistry conditions in large power reactors.

The irradiation apparatus was designed by MIT research scientist David Carpenter and research engineer Gordon Kohse. The effects of irradiation were studied by graduate student John Stempien and others, working with Kazimi. The results showed good strength retention during mechanical testing, Stempien says.

Graduate student Youho Lee and research scientist Tom McKrell conducted high-temperature oxidation studies on SiC. Under the extreme conditions of an accident, the corrosion rate was 100 to 1,000 times less than that of zircaloy. While zircaloy loses strength as temperature increases - becoming 2 percent weaker for every 10 C increase in temperature and losing all strength at about 1300 C, Stempien says - the strength of the SiC ceramic remains essentially constant to temperatures well above 1500 C.

The potential advantages of SiC cladding extend beyond reducing the risks in an accident, Kazimi explains. Because SiC reacts slowly with water, even under normal conditions it degrades less and can remain in a reactor core longer. That could allow reactor operators to squeeze extra energy out of fuel rods before refueling: The rods are typically replaced after four or five years in a reactor, and degradation of the cladding is a major limitation on their longevity.

In addition, the ability to leave fuel rods in place longer would reduce the spent fuel produced by each reactor, resulting in less volume for disposal, Kazimi says.

There are still further tests to be done: In particular, while zircaloy tubes can have their ends capped by welding a metal disk onto each end, ceramic can't be welded, so a suitable bonding agent will need to be found. "We need to join the ceramic to ceramic in a way that can withstand the conditions in the nuclear core," Kazimi says. "That's not as perfected a science as it is for metals." Other details, such as the optimal thickness of the tubes for durability and for heat transfer, also need to be determined.

In addition, the material needs to be tested further to determine its response to various stresses. "The fracture behavior is different," co-author Lee says. In particular, while metal deforms predictably under pressure, a ceramic tends to fracture in a way that is "more statistical," he says: It can only be predicted as a statistical likelihood of certain failure modes.

.


Related Links
Massachusetts Institute of Technology
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





CIVIL NUCLEAR
Fukushima nuclear clean-up costs rise as steam seen again
Tokyo (AFP) July 24, 2013
The clean-up after the Fukushima nuclear disaster could cost five times more than estimated, figures have revealed, as Tokyo Electric Power said on Wednesday that steam had been seen again in a reactor building. It is the third time steam has been observed in the battered structure over the last week. The government-backed National Institute of Advanced Industrial Science and Technology ... read more


CIVIL NUCLEAR
e2v and Astrium sign contract for imaging sensors to equip the Sentinel 4 satellite

The First Interplanetary Photobomb

The Color of the Ocean: the SABIA-Mar Mission

GOES-R Improvements to Provide Stunning, Continuous Full-Disk Imagery

CIVIL NUCLEAR
Lockheed Martin Delivers Antenna Assemblies For Integration On First GPS III Satellite

GPS III satellite antenna assemblies ready for installation

Lockheed Martin GPS III Prototype Validates Test Facilities For Future Flight Satellites

Distorted GPS signals reveal hurricane wind speeds

CIVIL NUCLEAR
80 percent of Malaysian Borneo degraded by logging

Stora Enso struggles into profit, eyes China project

Deforestation spikes in Brazil over last year: group

Changing Atmosphere Affects How Much Water Trees Need

CIVIL NUCLEAR
Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

Euro Parliament committee endorses cap on using crops for biofuels

CIVIL NUCLEAR
Two in one solution for low cost polymer LEDs and solar cells

HMC Farms Hedges Against Utility Power with Massive Cenergy Power Solar Farm

Sahara solar project fades, but sunpower shines in gulf

Solarcentury Africa ready for Southern African alternative energy generation boom

CIVIL NUCLEAR
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

CIVIL NUCLEAR
Major China coal plant drains lake, wells: Greenpeace

Greenpeace says Chinese coal company exploiting water

Troubled U.K. Coal enters administration in restructuring move

Report: Alpha Australian coal project is 'stranded'

CIVIL NUCLEAR
Chinese man kills one-child policy officials: media

Man in wheelchair detonates device at Beijing airport: state media

Hong Kong marks anniversary of Bruce Lee's death

Japan paper's social media accounts 'blocked in China'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement