Energy News  
EARLY EARTH
New research provides evidence of strong early magnetic field around Earth
by Staff Writers
Rochester NY (SPX) Jan 22, 2020

In order to determine the past magnetic field direction and intensity, the researchers dated and analyzed zircon crystals collected from sites in Australia. The zircons are about two-tenths of a millimeter and contain even smaller magnetic particles that lock in the magnetization of the earth at the time the zircons were formed.

Deep within Earth, swirling liquid iron generates our planet's protective magnetic field. This magnetic field is invisible but is vital for life on Earth's surface: it shields the planet from harmful solar wind and cosmic rays from the sun.

Given the importance of the magnetic field, scientists have been trying to figure out how the field has changed throughout Earth's history. That knowledge can provide clues to understanding the future evolution of Earth, as well as the evolution of other planets in the solar system.

New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed. The research, published in the journal PNAS, will help scientists draw conclusions about the sustainability of Earth's magnetic shield and whether or not there are other planets in the solar system with the conditions necessary to harbor life.

"This research is telling us something about the formation of a habitable planet," says John Tarduno, the William R. Kenan, Jr., Professor of Earth and Environmental Sciences and Dean of Research for Arts, Sciences, and Engineering at Rochester. "One of the questions we want to answer is why Earth evolved as it did and this gives us even more evidence that the magnetic shielding was recorded very early on the planet."

Earth's Magnetic Field Today
Today's magnetic shield is generated in Earth's outer core. The intense heat in Earth's dense inner core causes the outer core - composed of liquid iron - to swirl and churn, generating electric currents, and driving a phenomenon called the geodynamo, which powers Earth's magnetic field. The currents in the liquid outer core are strongly affected by the heat that flows out of the solid inner core.

Because of the location and extreme temperatures of materials in the core, scientists aren't able to directly measure the magnetic field. Fortunately, minerals that rise to Earth's surface contain tiny magnetic particles that lock in the direction and intensity of the magnetic field at the time the minerals cool from their molten state.

Using new paleomagnetic, electron microscope, geochemical, and paleointensity data, the researchers dated and analyzed zircon crystals - the oldest known terrestrial materials - collected from sites in Australia. The zircons, which are about two-tenths of a millimeter, contain even smaller magnetic particles that lock in the magnetization of the earth at the time the zircons were formed.

Earth's Magnetic Field 4 Billion Years Ago
Previous research by Tarduno found that Earth's magnetic field is at least 4.2 billion years old and has existed for nearly as long as the planet. Earth's inner core, on the other hand, is a relatively recent addition: it formed only about 565 million years ago, according to research published by Tarduno and his colleagues earlier this year.

While the researchers initially believed Earth's early magnetic field had a weak intensity, the new zircon data suggests a stronger field. But, because the inner core had not yet formed, the strong field that originally developed 4 billion years ago must have been powered by a different mechanism.

"We think that mechanism is chemical precipitation of magnesium oxide within Earth," Tarduno says.

The magnesium oxide was likely dissolved by extreme heat related to the giant impact that formed Earth's moon. As the inside of Earth cooled, magnesium oxide could precipitate out, driving convection and the geodynamo. The researchers believe inner Earth eventually exhausted the magnesium oxide source to the point that the magnetic field almost completely collapsed 565 million years ago.

But the formation of the inner core provided a new source to power the geodynamo and the planetary magnetic shield Earth has today.

A Magnetic Field On Mars
"This early magnetic field was extremely important because it shielded the atmosphere and water removal from the early Earth when solar winds were most intense," Tarduno says. "The mechanism of field generation is almost certainly important for other bodies like other planets and exoplanets."

A leading theory, for instance, is that Mars, like Earth, had a magnetic field early on in its history. However, on Mars, the field collapsed and, unlike Earth, Mars did not generate a new one.

"Once Mars lost its magnetic shielding, it then lost its water," Tarduno says. "But we still don't know why the magnetic shielding collapsed. Early magnetic shielding is really important, but we're also interested in the sustainability of a magnetic field. This study gives us more data in trying to figure out the set of processes that maintain the magnetic shield on Earth."


Related Links
University of Rochester
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Acoustic communication first emerged nearly 200 million years ago
Washington DC (UPI) Jan 17, 2020
For the first time, scientists took acoustic communication back to its evolutionary roots. Researchers followed acoustic communication's phylogenic path back some 200 million years through evolutionary history. Scientists began by plotting the relationships among some 1,800 species of tetrapods, including birds, frogs, crocodilians and mammals on a giant evolutionary tree. Next, they surveyed the scientific literature for data on the presence of acoustic communication within each plotted specie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Capella Space unveils new satellite design for EO platform

Kleos and Geollect sign Channel Partner and Integrator Agreement

Clouds as a factor influencing the climate

China's first civilian HD mapping satellite in service for eight years

EARLY EARTH
China's international journal Satellite Navigation launched

FAA warns military training exercise could jam GPS signals in southeast, Caribbean

China Focus: China to complete Beidou-3 satellite system in 2020

China's Beidou navigation system to provide unique services

EARLY EARTH
Taking root? Tree-planting new trend in eco-conscious Davos

Amazon indigenous leaders accuse Brazil of 'genocide' policy

Amazon tribes meet to counter Bolsonaro environmental threats

Deforestation in Brazil's Amazon up 85 percent in 2019

EARLY EARTH
Microwaving sewage waste may make it safe to use as fertilizer on crops

How to make it easier to turn plant waste into biofuels

EU project RES URBIS shows the viability of bioplastic generation with urban biowaste

From a by-product of the biodiesel industry to a valuable chemical

EARLY EARTH
Spain declares climate emergency, signals move to renewables

New molecule harnesses full visible spectrum of sunlight

Qatar signs $470 mn solar deal

Solar-powered barge a key 'interceptor' for plastic waste

EARLY EARTH
UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

EARLY EARTH
BlackRock coal divestment welcomed, scrutinised by insiders

Germany looks to step up coal exit timetable

New UK deep coal mine 'unnecessary': green group; As wind soars

Protests and outrage as Siemens backs Aussie mine project

EARLY EARTH
Kazakh court rules against returning two asylum seekers to China

China's former Interpol chief sentenced to 13 years in prison

Toy Story: Hong Kong protest models become major hit

China birth rate hits lowest level since 1949









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.