Energy News  
CHIP TECH
New robust device may scale up quantum tech, researchers say
by Staff Writers
West Lafayette IN (SPX) May 01, 2019

A study demonstrates that a combination of two materials, aluminum and indium arsenide, forming a device called a Josephson junction could make quantum bits more resilient.

Researchers have been trying for many years to build a quantum computer that industry could scale up, but the building blocks of quantum computing, qubits, still aren't robust enough to handle the noisy environment of what would be a quantum computer.

A theory developed only two years ago proposed a way to make qubits more resilient through combining a semiconductor, indium arsenide, with a superconductor, aluminum, into a planar device. Now, this theory has received experimental support in a device that could also aid the scaling of qubits.

This semiconductor-superconductor combination creates a state of "topological superconductivity," which would protect against even slight changes in a qubit's environment that interfere with its quantum nature, a renowned problem called "decoherence."

The device is potentially scalable because of its flat "planar" surface - a platform that industry already uses in the form of silicon wafers for building classical microprocessors.

The work, published in Nature, was led by the Microsoft Quantum lab at the University of Copenhagen's Niels Bohr Institute, which fabricated and measured the device. The Microsoft Quantum lab at Purdue University grew the semiconductor-superconductor heterostructure using a technique called molecular beam epitaxy, and performed initial characterization measurements.

Theorists from Station Q, a Microsoft Research lab in Santa Barbara, California, along with the University of Chicago and the Weizmann Institute of Science in Israel, also participated in the study.

"Because planar semiconductor device technology has been so successful in classical hardware, several approaches for scaling up a quantum computer having been building on it," said Michael Manfra, Purdue University's Bill and Dee O'Brien Chair Professor of Physics and Astronomy, and professor of electrical and computer engineering and materials engineering, who leads Purdue's Microsoft Station Q site.

These experiments provide evidence that aluminum and indium arsenide, when brought together to form a device called a Josephson junction, can support Majorana zero modes, which scientists have predicted possess topological protection against decoherence.

It's also been known that aluminum and indium arsenide work well together because a supercurrent flows well between them.

This is because unlike most semiconductors, indium arsenide doesn't have a barrier that prevents the electrons of one material from entering another material. This way, the superconductivity of aluminum can make the top layers of indium arsenide, a semiconductor, superconducting, as well.

"The device isn't operating as a qubit yet, but this paper shows that it has the right ingredients to be a scalable technology," said Manfra, whose lab specializes in building platforms for, and understanding the physics of, upcoming quantum technologies.

Combining the best properties of superconductors and semiconductors into planar structures, which industry could readily adapt, could lead to making quantum technology scalable. Trillions of switches, called transistors, on a single wafer currently allow classical computers to process information.

"This work is an encouraging first step towards building scalable quantum technologies," Manfra said.

Research Report: "Evidence of Topological Superconductivity in Planar Josephson Junctions"


Related Links
Purdue University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Nanocomponent is a quantum leap for Danish physicists
Copenhagen, Denmark (SPX) Apr 24, 2019
University of Copenhagen researchers have developed a nanocomponent that emits light particles carrying quantum information. Less than one-tenth the width of a human hair, the miniscule component makes it possible to scale up and could ultimately reach the capabilities required for a quantum computer or quantum internet. The research result puts Denmark at the head of the pack in the quantum race. Teams around the world are working to develop quantum technologies. The focus of researchers based at ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Greek researchers enlist EU satellite against Aegean sea litter

Arianespace to launch "SAR" satellite StriX-a aboard Vega for Japanese startup company Synspective

Geomagnetic jerks finally reproduced and explained

How NASA Earth Data Aids America, State by State

CHIP TECH
China launches new BeiDou satellite

Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

CHIP TECH
19 arrested in Brazil raids over illegal Amazon logging

Tropical forest the size of England destroyed in 2018: report

Illegal logging in Brazil turns Amazon into a powder keg

Poachers threaten precious Madagascar forest and lemurs

CHIP TECH
Biodegradable bags can hold a full load of shopping after 3 years in the environment

How to take the 'petro' out of the petrochemicals industry

Researchers create artificial mother-of-pearl using bacteria

Harnessing sunlight to pull hydrogen from wastewater

CHIP TECH
Improving the lifetime of bioelectrodes for solar energy conversion

Inorganic perovskite absorbers for use in thin-film solar cells

Record solar hydrogen production with concentrated sunlight

New research to explore technology needed for peer-to-peer 'free trade' in excess energy

CHIP TECH
BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

E.ON announces start of construction on South Texas windfarm

CHIP TECH
Contentious India-backed Australia mine clears major hurdle

Smog chokes coal-dependent Poland with no end in sight

Push for more coal power in China imperils climate

China investigates officials after deadly mine accident

CHIP TECH
Working stiffs: China's tech minions burn out in '996' rat race

Huge Hong Kong protest against China extradition plan

China formally arrests ex-Interpol chief

20 years on, Falungong survives underground in China









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.