Subscribe free to our newsletters via your
. Farming News .




CHIP TECH
New technique to help produce next-generation photonic chips
by Staff Writers
Southampton, UK (SPX) Nov 17, 2014


This image shows ultrafast photomodulation spectroscopy with the sample in the middle and the small blue spot on the sample, which shows the actual pump-light used in the method. Image courtesy University of Southampton.

Researchers from the University of Southampton have developed a new technique to help produce more reliable and robust next generation photonic chips.

Photonic chips made from silicon will play a major role in future optical networks for worldwide data traffic. The high refractive index of silicon makes optical structures the size of a fraction of the diameter of a human hair possible.

Squeezing more and more optical structures for light distribution, modulation, detection and routing into smaller chip areas allows for higher data rates at lower fabrication costs.

As the complexity of optical chips increases, testing and characterising such chips becomes more difficult. Light traveling in the chip is confined in the silicon, that is, it cannot be 'seen' or measured from the outside.

Southampton researchers have now developed a new method, which will help solve this problem, to find out at which time the light in the chip is at which position. The technique, called Ultrafast photomodulation spectroscopy (UPMS), uses ultraviolet laser pulses of femtosecond duration to change the refractive index of silicon in a tiny area on the photonic chip.

Non-contact characterization tools like UPMS are vital for scientist designing complex photonic chips. The UPMS technique is fast and robust and has the potential to be used for industrial testing in the photonics industry.

The research is published in the latest issue of the journal Nature Photonics.

Dr Roman Bruck, from Physics and Astronomy at the University of Southampton and lead author of the study, says: "Monitoring the transmission of the chip while the refractive index is locally changed gives a precise picture of how the light flows through it.

"This allows testing of individual optical elements on the chip, a crucial step in the design optimisation to ensure its flawless operation. Because the changes induced by the technique are fully reversible, this testing method is non-destructive and after testing, the chip can be used for its intended application."

The research team, from Physics and Astronomy and the Optoelectronics Research Centre (ORC) at the University, expects to establish the technique as a standard characterisation tool, making photonic chips under development more reliable and bringing them into the market quicker. The work has been funded by the Engineering and Physical Sciences Research Council (EPSRC).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southampton
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Researchers create and control spin waves for enhanced data processing
New York NY (SPX) Nov 17, 2014
A team of New York University and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so. Their method, reported in the most recent issue of the journal Nature Nanote ... read more


CHIP TECH
NASA Computer Model Provides a New Portrait of Carbon Dioxide

NASA's New Wind Watcher Ready for Weather Forecasters

GOES-S Satellite EXIS Instrument Passes Final Review

NASA Lining up ICESat-2's Laser-catching Telescope

CHIP TECH
Russia to place global navigation stations in China

Telit Introduces Jupiter SL871-S GPS Module

Galileo satellite set for new orbit

KVH Receives Order for Military Navigation Systems

CHIP TECH
As elephants go, so go the trees

Protecting forests alone would not halt land-use change emissions

Mapping reveals targets for preserving tropical carbon stocks

Call for greater protection at World Parks Congress

CHIP TECH
WELTEC builds Biogas Plants in Greece

Lockheed Martin to build 5-megawatt bioenergy facility in Germany

DARPA's EZ BAA Cuts Red Tape to Speed Funding of New Biotech Ideas

New process transforms wood, crop waste into valuable chemicals

CHIP TECH
Trina Signs 10 MW EPC Agreement with Jordan

Renewable energy improves stock price of mining companies

Revolutionary solar-friendly form of silicon shines

ET Solar Supplies 5 MW PV Modules to a Mining Operation in Suriname

CHIP TECH
Labor building behind East Coast wind energy industry

Moventas completes first ever Clipper up-tower service

Momentum builds behind U.S. offshore wind sector

Second stage of Snowtown Wind Farm blows away the competition

CHIP TECH
CHIP TECH
Myanmar hosts biggest cast of world leaders since reforms

China to punish Tibet officials who support Dalai Lama

Spanish gallery showcases Chinese dissident Ai Wei Wei's works

Hong Kong activists mull taking protest to Beijing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.