. Energy News .




.
NUKEWARS
Novel radiation surveillance technology could help thwart nuclear terrorism
by Staff Writers
Atlanta GA (SPX) May 03, 2012

Pictured here are examples of scintillators produced from molten glass by the researchers. The fluorescence exhibited by the blue scintillators is activated by cerium, while the fluorescence shown by the green scintillator is activated by terbium. The worm-like blue structure is an artifact from the glass-molding process. Credit: (Credit: Gary Meek).

Among terrorism scenarios that raise the most concern are attacks involving nuclear devices or materials. For that reason, technology that can effectively detect smuggled radioactive materials is considered vital to U.S. security.

To support the nation's nuclear-surveillance capabilities, researchers at the Georgia Tech Research Institute (GTRI) are developing ways to enhance the radiation-detection devices used at ports, border crossings, airports and elsewhere. The aim is to create technologies that will increase the effectiveness and reliability of detectors in the field, while also reducing cost. The work is co-sponsored by the Domestic Nuclear Defense Office of the Department of Homeland Security and by the National Science Foundation.

"U.S. security personnel have to be on guard against two types of nuclear attack - true nuclear bombs, and devices that seek to harm people by dispersing radioactive material," said Bernd Kahn, a researcher who is principal investigator on the project. "Both of these threats can be successfully detected by the right technology."

The GTRI team, led by co-principal investigator Brent Wagner, is utilizing novel materials and nanotechnology techniques to produce improved radiation detection. The researchers have developed the Nano-photonic Composite Scintillation Detector, a prototype that combines rare-earth elements and other materials at the nanoscale for improved sensitivity, accuracy and robustness.

Details of the research were presented at the SPIE Defense, Security, and Sensing Conference held in Baltimore, MD.

Scintillation detectors and solid-state detectors are two common types of radiation detectors, Wagner explained. A scintillation detector commonly employs a single crystal of sodium iodide or a similar material, while a solid-state detector is based on semiconducting materials such as germanium.

Both technologies are able to detect gamma rays and subatomic particles emitted by nuclear material. When gamma rays or particles strike a scintillation detector, they create light flashes that are converted to electrical pulses to help identify the radiation at hand. In a solid-state detector, incoming gamma rays or particles register directly as electrical pulses.

"Each reaction to a gamma ray takes a very short time - a fraction of a microsecond," Wagner said. "By looking at the number and the intensity of the pulses, along with other factors, we can make informed judgments about the type of radioactive material we're dealing with."

But both approaches have drawbacks. A scintillation detector requires a large crystal grown from sodium iodide or other materials. Such crystals are typically fragile, cumbersome, difficult to produce and extremely vulnerable to humidity.

A germanium-based solid-state detector offers better identification of different kinds of nuclear materials. But high-purity single-crystal germanium is difficult to make in a large volume; the result is less-sensitive devices with reduced ability to detect radiation at a distance. Moreover, germanium must be kept extremely cold - 200 degrees below zero Celsius - to function properly, which poses problems for use in the field.

The Nanoscale Advantage
To address these problems, the GTRI team has been investigating a wide variety of alternative materials and methodologies. After selecting the scintillation approach over solid-state, the researchers developed a composite material - composed of nanoparticles of rare-earth elements, halides and oxides - capable of creating light.

"A nanopowder can be much easier to make, because you don't have to worry about producing a single large crystal that has zero imperfections," Wagner said.

A scintillator crystal must be transparent to light, he explained, a quality that's key to its ability to detect radiation. A perfect crystal uniformly converts incoming energy from gamma rays to flashes of light. A photo-multiplier then amplifies these flashes of light so they can be accurately measured to provide information about radioactivity.

However, when a transparent material - such as crystal or glass - is ground into smaller pieces, its transparency disappears. As a result, a mixture of particles in a transparent glass would scatter the luminescence created by incoming gamma rays. That scattered light can't reach the photo-multiplier in a uniform manner, and the resulting readings are badly skewed.

To overcome this issue, the GTRI team reduced the particles to the nanoscale. When a nanopowder reaches particle sizes of 20 nanometers or less, scattering effects fade because the particles are now significantly smaller than the wavelength of incoming gamma rays.

"Think of it as a big ocean wave coming in," Wagner said. "That wave would definitely interact with a large boat, but something the size of a beach ball doesn't affect it."

Rare Earths and Silica
At first the team worked on dispersing radiation-sensitive crystalline nanoparticles in a plastic matrix. But they encountered problems with distributing the nanopowder uniformly enough in the matrix to achieve sufficiently accurate radiation readings.

More recently, the researchers have investigated a parallel path using glass rather than plastic as a matrix material, combining gadolinium and cerium bromide with silica and alumina.

Kahn explained that gadolinium or a similar material is essential to scintillation-type particle detection because of its role as an absorber. But in this case, when an incoming gamma ray is absorbed in gadolinium, the energy is not efficiently emitted in the form of luminescence.

Instead, the light emission role here falls to a second component - cerium. The gadolinium absorbs energy from an incoming gamma ray and transfers that energy to the cerium atom, which then acts as an efficient light emitter.

The researchers found that by heating gadolinium, cerium, silica and alumina and then cooling them from a molten mix to a solid monolith, they could successfully distribute the gadolinium and cerium in silica-based glasses. As the material cools, gadolinium and cerium precipitate out of the aluminosilicate solution and are distributed throughout the glass in a uniform manner. The resulting composite gives dependable readings when exposed to incoming gamma rays.

"We're optimistic that we've identified a productive methodology for creating a material that could be effective in the field," Wagner said. "We're continuing to work on issues involving purity, uniformity and scaling, with the aim of producing a material that can be successfully tested and deployed."

Related Links
Georgia Institute of Technology Research News
Learn about nuclear weapons doctrine and defense at SpaceWar.com
Learn about missile defense at SpaceWar.com
All about missiles at SpaceWar.com
Learn about the Superpowers of the 21st Century at SpaceWar.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NUKEWARS
Report claims Sarkozy, Kadhafi in 'secret' nuclear deal
Paris (AFP) April 30, 2012
A French magazine is claiming that President Nicolas Sarkozy and Libya's ex-strongman Moamer Kadhafi reached a "secret deal" to trade nuclear cooperation for the release of foreign medics. Based on "confidential documents", the report to appear Wednesday in weekly Les Inrockuptibles emerged ahead of Sunday's run-off vote between Sarkozy and Socialist frontrunner Francois Hollande. It cam ... read more


NUKEWARS
Report warns of rapid decline in US Earth observation capabilities

Lockheed Martin Completes Key Integration Milestone on GeoEye-2

NASA Image Gallery Highlights Earth's Changing Face

Risat-1 satellite raised to its final intended orbit

NUKEWARS
China launches two navigation satellites

Astrium built Galileo satellites fit and fully operational in orbit

First payload ready for next batch of Galileo satellites

NASA Tests GPS Monitoring System for Big US Quakes

NUKEWARS
Handful of heavyweight trees per acre are forest champs

Green groups say Indonesia deforestation ban 'weak'

Bolivian natives begin new march in road protest

Do urban 'heat islands' hint at trees of future?

NUKEWARS
The Andersons Finalizes Purchase of Iowa Ethanol Plant

Better plants for biofuels

USA Leads World in Exports of Ethanol

Butamax Expands Early Adopters Group

NUKEWARS
World tour on solar-powered boat to beat climate change

Strombeck Properties Unveils New 225kW Solar Power System in Arcata

Assurant Launches First-of-its-kind Solar Project Insurance

Mount Diablo Unified School District Installs SunPower Solar Systems at 51 Schools

NUKEWARS
NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

DoD, Navy and Wind Farm Developer Release Historic MoA

British engineering firm creates 1,000 wind farm jobs

NUKEWARS
Nine die in China coal mine blast

Buy coal? New analysis shows purchasing fossil fuel deposits best way to fight climate change

At least 15 dead in two China mine floods

Coal India faces government pressure

NUKEWARS
Chen case exposes limits to central power in China

Eyes on China after Clinton deal on dissident

US in talks with blind China activist after plea for help

Heritage conservation, Chinese style: demolition


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement