Free Newsletters - Space - Defense - Environment - Energy
..
. Energy News .




STELLAR CHEMISTRY
Observations reveal critical interplay of interstellar dust, hydrogen
by Staff Writers
Madison WI (SPX) Oct 02, 2013


Intense molecular hydrogen formation shown in near infrared image of the reflection nebula IC 63 in the constellation Cassiopeia. The white bars represent polarization seen toward stars in the background of the nebula. The largest polarization shows the most intense emission, demonstrating that hydrogen formation influences alignment of the dust grain with a magnetic field.

For astrophysicists, the interplay of hydrogen - the most common molecule in the universe - and the vast clouds of dust that fill the voids of interstellar space has been an intractable puzzle of stellar evolution.

The dust, astronomers believe, is a key phase in the life cycle of stars, which are formed in dusty nurseries throughout the cosmos. But how the dust interacts with hydrogen and is oriented by the magnetic fields in deep space has proved a six-decade-long theoretical challenge.

Now, an international team of astronomers reports key observations that confirm a theory devised by University of Wisconsin-Madison astrophysicist Alexandre Lazarian and Wisconsin graduate student Thiem Hoang. The theory describes how dust grains in interstellar space, like soldiers in lock-drill formation, spin and organize themselves in the presence of magnetic fields to precisely align in key astrophysical environments.

The effort promises to untangle a theoretical logjam about key elements of the interstellar medium and underpin novel observational tactics to probe magnetic fields in space.

The new observations, conducted by a team led by B-G Andersson of the Universities Space Research Association (USRA), and their theoretical implications are to be reported in the Oct. 1, 2013 edition of the Astrophysical Journal.

The observations were conducted using a variety of techniques - optical and near infrared polarimetry, high-accuracy optical spectroscopy and photometry, and sensitive imaging in the near infrared - at observatories in Spain, Hawaii, Arizona and New Mexico.

"We need to understand grain alignment if we want to make use of polarimetry as a means of investigating interstellar magnetic fields," says Lazarian, who was encouraged to attack the problem by the renowned astrophysicist Lyman Spitzer. "Spitzer himself worked on the problem extensively."

Scientists have long known that starlight becomes polarized as it shines through clouds of neatly aligned, rapidly spinning grains of interstellar dust. And the parsing of polarized light is a key observational technique. But how the grains of dust interact with hydrogen, become aligned so that starlight shining through becomes polarized, and are set spinning has been a mystery.

"While interstellar polarization has been known since 1949, the physical mechanisms behind grain alignment have been poorly understood until recently," explains Andersson. "These observations form part of a coordinated effort to - after more than 60 years - place interstellar grain alignment on a solid theoretical and observational footing."

The observations made by Andersson and his colleagues support an analytical theory posed by Lazarian and Hoang known as Radiative Alignment Torque, which describes how irregular grains can be aligned by their interaction with magnetic fields and stellar radiation. Under the theory, grains are spun, propeller-like, by photons.

Their alignment is modified by magnetic fields, which orients them with respect to the field, telling an observer its direction. Impurities and defects on the dust grains produce catalytic sites for the formation of hydrogen molecules, which are subsequently ejected, creating miniature "rocket engines," also called "Purcell thrusters" after Nobel laureate Edwin Purcell, who studied grain alignment.

The theory devised by Lazarian and Hoang predicts how the molecular hydrogen thrust changes grain alignment, and was put to the test by Andersson's team of observers.

Confirming the theory, Lazarian notes, not only helps explain how interstellar dust grains align, but promises a new ability for astronomers to use polarized visible and near infrared light to reliably probe the strength and structure of magnetic fields in interstellar space, a notoriously difficult phenomenon to measure quantitatively.

Interstellar magnetic fields are ubiquitous in spiral galaxies like our Milky Way and are believed to be essential regulators of star formation and the evolution of proto-planetary disks. They also control the regulation and propagation of cosmic rays.

The murky piece of the astrophysical puzzle, says Lazarian, was how the irregular grains of interstellar dust were set in spinning motion. The observations conducted by Andersson demonstrate that intense molecular hydrogen formation on the surface of the interstellar dust grains is an important contributor to the dust grains spinning.

Hydrogen does not exist in the element's gas phase in space since the two atoms of the molecule cannot rid themselves of the formation reaction energy without a third body. The two hydrogen atoms therefore use the surfaces of dust grains as a substrate, and the force of the reaction energy is enough to set the dust grains in motion.

The new work, which was supported by the National Science Foundation, is especially timely, Lazarian says, as two new observatories - the ground-based ALMA, the Atacama Large Millimeter Array, and the space-based Planck Telescope - are poised to build on the new results.

.


Related Links
University of Wisconsin-Madison
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News



International Conference on Protection of Materials and Structures From Space Environment



STELLAR CHEMISTRY
Jekyll and Hyde star morphs from radio to X-ray pulsar and back again
Charlottesville, VA (SPX) Oct 02, 2013
Astronomers have uncovered the strange case of a neutron star with the peculiar ability to transform from a radio pulsar into an X-ray pulsar and back again. This star's capricious behavior appears to be fueled by a nearby companion star and may give new insights into the birth of millisecond pulsars. "What we're seeing is a star that is the cosmic equivalent of 'Dr. Jekyll and Mr. Hyde,' ... read more


STELLAR CHEMISTRY
Japan takes issue with Google maps over islands: reports

Australia's new prototype vehicle to improve Earth observation satellites' accuracy

UCLA scientists explain the formation of unusual ring of radiation in space

Ultra-fast Electrons Explain Third Radiation Ring Around Earth

STELLAR CHEMISTRY
Astrium down selected for MOJ electronic tagging contract

Lockheed Martin GPS 3 Satellite Prototype Integrated With Raytheon OCX Ground Control Segment

China's navi-location industries to boom: white paper

OHN Christner Trucking Selects Orbcomm For Refrigerated Telematics Solution

STELLAR CHEMISTRY
Indonesia, EU seal pact to stop illegal timber exports

Seeing the forest and the trees

Uphill for the trees of the world

Tropical forests 'fix' themselves

STELLAR CHEMISTRY
First look at complete sorghum genome may usher in new uses for food and fuel

First steps towards achieving better and cheaper biodiesel

Want wine with those biofuels? Why not, researchers ask

Duckweed as a cost-competitive raw material for biofuel

STELLAR CHEMISTRY
Heilind showcasing solar products at NECA

Standard Solar and Solar Grid Storage Collaborate to Complete Pioneering Commercial Solar Microgrid

Trina Solar powers 11MWp Hazel Capital project for Oskomera

Solar Maid adds Several Island Locations

STELLAR CHEMISTRY
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

STELLAR CHEMISTRY
Calculating the true cost of a ton of mountaintop coal

Ukraine designates 45 coal mines for sale in privatization push

German coal mine turns village into ghost town

India's 'Coalgate' deepens

STELLAR CHEMISTRY
Hong Kong implements official benchmark on poverty

China web users' scathing critique of giant Tiananmen vase

China Tiananmen Square makeover meets cost complaints

Nearly 9 in 10 kids in China know cigarette logos: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement