. Energy News .




FLORA AND FAUNA
Odd biochemistry yields lethal bacterial protein
by Staff Writers
Champaign IL (SPX) Jan 24, 2013


Chemistry professor Wilfred van der Donk (left) and graduate student Weixin Tang, University of Illinois, determined the unusual structure of a bacterial toxin. Credit: L. Brian Stauffer.

While working out the structure of a cell-killing protein produced by some strains of the bacterium Enterococcus faecalis, researchers stumbled on a bit of unusual biochemistry. They found that a single enzyme helps form distinctly different, three-dimensional ring structures in the protein, one of which had never been observed before.

The new findings, reported in Nature Chemical Biology, should help scientists find new ways to target the enterococcal cytolysin protein, a "virulence factor that is associated with acute infection in humans," said University of Illinois chemistry and Institute for Genomic Biology professor Wilfred van der Donk, who conducted the study with graduate student Weixin Tang.

Enterococcus faecalis (EN-ter-oh-cock-us faye-KAY-liss) is a normal microbial inhabitant of the gastrointestinal tracts of humans and other mammals and generally does not harm its host. Some virulent strains, however, produce cytolysin (sigh-toe-LIE-sin), a protein that, once assembled, attacks other microbes and kills mammalian cells.

"The cytolysin protein made by Enterococcus faecalis consists of two compounds that have no activity by themselves but when combined kill human cells," van der Donk said.

"We know from epidemiological studies that if you are infected with a strain of E. faecalis that has the genes to make cytolysin, you have a significantly higher chance of dying from your infection." E. faecalis contributes to root canal infections, urinary tract infections, endocarditis, meningitis, bacteremia and other infections.

Enterococcal cytolysin belongs to a class of antibiotic proteins, called lantibiotics, which have two or more sulfur-containing ring structures. Scientists had been unable to determine the three-dimensional structure of this cytolysin because the bacterium produces it at very low concentrations. Another problem that has stymied researchers is that the two protein components of cytolysin tend to clump together when put in a lab dish.

Van der Donk and Tang got around these problems by producing the two cytolysin components separately in another bacterium, Escherichia coli (esh-uh-REE-kee-uh KOH-lie), and analyzing them separately.

"The two components are both cyclic peptides, one with three rings and the other with two rings," van der Donk said. "Curiously, a single enzyme makes both compounds."

In a series of experiments, the researchers found that one ring on each of the proteins adopted a (D-L) stereochemistry that is common in lantibiotics (see image, above). But the other rings all had an unusual (L-L) configuration, something van der Donk had never seen before.

Scientists had assumed that the enzyme that shaped enterococcal cytolysin, a lantibiotic synthetase, acted like a three-dimensional mold that gave the ring structures of cytolysin the exact same stereochemistry, van der Donk said.

"But we found that the enzyme, enterococcal cytolysin synthetase, makes the rings with different stereochemistry," he said. "I don't know of any other examples where one enzyme can make very similar products but with different stereochemistries."

The researchers don't know how the enzyme accomplishes this feat, but found a clue in the sequence of amino acids that make up the protein rings. The chemical characteristics of the three amino acids in the middle of the ring structure and their proximity to another amino acid, a cysteine, determined whether the rings took on a D-L or L-L stereochemistry.

The researchers tested the idea that the amino acid sequence of the cytolysin protein was guiding the stereochemistry by looking at other lantibiotic proteins with similar sequences. So far, every protein they've tested that has the same sequence characteristics conforms to the pattern they discovered, van der Donk said.

Further tests showed that the cytolysin produced in E. coli had the same anti-microbial and cell-killing potency as the E. faecalis variety.

"Knowing the structure of enterococcal cytolysin and having a method to produce it in relatively large quantities will allow scientists to find out how it kills human cells and, in turn, how we might fight against it," van der Donk said.

The paper, "The Sequence of the Enterococcal Cytolysin Imparts Unusual Lanthionine Stereochemistry," is available to the media from the U. of I. News Bureau.

.


Related Links
University of Illinois at Urbana-Champaign
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FLORA AND FAUNA
Poachers kill 32 S.African rhinos this year
Johannesburg (AFP) Jan 23, 2013
Poachers have slaughtered 32 South African rhinos in the first three weeks of 2013, marking a disturbing start to the year for a country battling crisis level killings of the beast, government said Wednesday. A record 668 rhinos were killed last year, most of them in the vast wildlife reserve and the country's top safari destination, Kruger National Park. The killings continue despite th ... read more


FLORA AND FAUNA
RapidEye Commits to Data Continuity; Discusses System Health and Life Span

Pleiades 1B captures its first images using e2v sensors

NASA's Interface Region Imaging Spectrograph Mission Satellite Completed

Landsat Senses a Disturbance in the Forest

FLORA AND FAUNA
Lockheed Martin Awarded Contract to Sustain Ground Station for Global Positioning System

China promotes Beidou technology on transport vehicles

New location system could compete with GPS

Beidou's unique services attractive to Chinese companies

FLORA AND FAUNA
Brazil to inventory Amazon rainforest trees

Civilians fell rare Syrian trees for firewood

Prosecutors take issue with Brazil's new forestry code

Climate change's effects on temperate rain forests surprisingly complex

FLORA AND FAUNA
Wind in the willows boosts biofuel production

Fuel Choices and How They Affect Car Insurance

US Secretary of Agriculture Tom Vilsack visits Renmatix for commissioning of plant to sugar BioFlex Conversion Unit

Photovoltaics beat biofuels at converting sun's energy to miles driven

FLORA AND FAUNA
Solar System to be installed at Davos Congress Centre

'Evolution' improves solar cell efficiency

A new world record for solar cell efficiency

Leading New Jersey Commercial Property Owner Taps Rooftops to Go Solar

FLORA AND FAUNA
Japan plans world's largest wind farm

China revs up wind power amid challenges

Algonquin Power Buys 109 MW Shady Oaks Wind Power Facility

British group pans wind farm compensation

FLORA AND FAUNA
China mine blast kills 17: state media

China mine blast toll rises to 23

China mine blast kills 18: state media

US shale gas drives up coal exports

FLORA AND FAUNA
China woman held in morgue for three years: media

China tries two Tibetan self-immolation 'inciters': media

China's mass annual New Year migration begins

China dissident makes film on disputed death




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement