Subscribe free to our newsletters via your
. Farming News .




TECH SPACE
Physicists shatter stubborn mystery of how glass forms
by Staff Writers
Waterloo, Canada (SPX) Jul 01, 2015


Professor James Forrest is among a team of scientists who have described how glasses form at the molecular level. Image courtesy University of Waterloo. For a larger version of this image please go here.

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists for decades. Their simple theory is expected to open up the study of glasses to non-experts and undergraduates as well as inspire breakthroughs in novel nano materials.

The paper published by physicists from the University of Waterloo, McMaster University, ESPCI ParisTech and Universite Paris Diderot appeared in the prestigious peer-reviewed journal, Proceedings of the National Academy of Sciences (PNAS).

Glasses are much more than silicon-based materials in bottles and windows. In fact, any solid without an ordered, crystalline structure - metal, plastic, a polymer - that forms a molten liquid when heated above a certain temperature is a glass. Glasses are an essential material in technology, pharmaceuticals, housing, renewable energy and increasingly nano electronics.

"We were surprised - delighted - that the model turned out to be so simple," said author James Forrest, a University Research Chair and professor in the Faculty of Science. "We were convinced it had already been published."

The theory relies on two basic concepts: molecular crowding and string-like co-operative movement. Molecular crowding describes how molecules within glasses move like people in a crowded room. As the number of people increase, the amount of free volume decreases and the slower people can move through the crowd. Those people next to the door are able to move more freely, just as the surfaces of glasses never actually stop flowing, even at lower temperatures.

The more crowded the room, the more you rely on the co-operative movement with your neighbours to get where you're going.

Likewise, individual molecules within a glass aren't able to move totally freely. They move with, yet are confined by, strings of weak molecular bonds with their neighbours.

Theories of crowding and cooperative movement are decades old. This is the first time scientists combined both theories to describe how a liquid turns into a glass.

"Research on glasses is normally reserved for specialists in condensed matter physics," said Forrest, who is also an associate faculty member at Perimeter Institute for Theoretical Physics and a member of the Waterloo Institute for Nanotechnology. "Now a whole new generation of scientists can study and apply glasses just using first-year calculus."

Their theory successfully predicts everything from bulk behaviour to surface flow to the once-elusive phenomenon of the glass transition itself. Forrest and colleagues worked for 20 years to bring theory in agreement with decades of observation on glassy materials.

An accurate theory becomes particularly important when trying to understand glass dynamics at the nanoscale. This finding has implications for developing and manufacturing new nanomaterials, such as glasses with conductive properties, or even calculating the uptake of glassy forms of pharmaceuticals.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Waterloo
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Helium 'balloons' offer new path to control complex materials
Oak Ridge TN (SPX) Jul 01, 2015
Researchers at the Department of Energy's Oak Ridge National Laboratory have developed a new method to manipulate a wide range of materials and their behavior using only a handful of helium ions. The team's technique, published in Physical Review Letters, advances the understanding and use of complex oxide materials that boast unusual properties such as superconductivity and colossal magnetoresi ... read more


TECH SPACE
Beijing Quadrupled in Size in a Decade

A New Era of Space Collaboration between Australia and US

Second Copernicus environmental satellite safely in orbit

Magnetic complexity begins to untangle

TECH SPACE
GPS Industries Launches Troon Connectivity Program

Raytheon Demonstrates Advanced GPS OCX Capabilities

Russia Begins Mass Production of Glonass-K1 Navigation Satellites

Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

TECH SPACE
In Beirut, a green paradise off-limits to Lebanese

Some forestlands cool climate better without trees

Lax rules put Congo's forests, key carbon reserve, at risk

A contentious quest for Kevazingo, Gabon's sacred tree

TECH SPACE
Synthetic biology used to engineer new route to biochemicals

Unlocking fermentation secrets open the door to new biofuels

Elucidation of chemical ingredients in rice straw

Better switchgrass, better biofuel

TECH SPACE
Ream develops storage cell for solar energy storage, nighttime conversion

Colorado's Largest City Chooses Community Solar

Old Kyoto golf course to be repurposed with 23-Megawatt solar power plant

Lockheed Martin solar carport will be Florida's largest private solar array

TECH SPACE
Successful Commissioning Of HelWin2 HVDC Grid Connection

Winds of change as Ethiopia harnesses green power

Viaducts with wind turbines, the new renewable energy source

Scotland plans emergency wind energy talks

TECH SPACE
German government drops plans for contested coal tax

Top China coal executive under investigation: firm

Norway blazes trail by pulling huge sovereign fund out of coal

Coal in the crosshairs in Europe but fuelling emerging markets

TECH SPACE
Hundreds protest against Dalai Lama in Britain

China's Great Wall is disappearing: report

Billions of China's lottery funds misused: report

Chinese who buy children to be prosecuted: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.