Energy News  
FARM NEWS
Plants manipulate their soil environment to assure a cheap, steady supply of nutrients
by Staff Writers
Houston TX (SPX) Jan 30, 2020

"These relationships with symbionts are metabolically costly," she said. "Plants have to pay the microbes in photosynthesized sugar, and in exchange the microbes mine the soil for nutrients. Microbial symbionts can be really expensive subcontractors, sometimes taking a significant fraction of a plant's photosynthate.

The next time you're thinking about whether to cook dinner or order a pizza for delivery, think of this: Plants have been doing pretty much the same thing for eons.

Researchers in Rice University's Systems, Synthetic and Physical Biology program detailed how plants have evolved to call for nutrients, using convenient bacteria as a delivery service.

Their open-access report in Science Advances looks at how plants read the local environment and, when necessary, make and release molecules called flavonoids. These molecules attract microbes that infect the plants and form nitrogen nodules - where food is generated - at their roots.

When nitrogen is present and available, plants don't need to order in. Their ability to sense the presence of a nearby slow-release nitrogen source, organic carbon, is the key.

"It's a gorgeous example of evolution: Plants change a couple of (oxygen/hydrogen) groups here and there in the flavonoid, and this allows them to use soil conditions to control which microbes they talk to," said Rice biogeochemist Caroline Masiello, a co-author of the study.

The Rice team, in collaboration with researchers at Cornell University, specifically analyzed how flavonoids mediate interactions between plants and microbes depending on the presence of abiotic (nonliving) carbon. Their experiments revealed, to their surprise, that an excess of dissolved - rather than solid - carbon in soil effectively quenches flavonoid signals.

Understanding how carbon in soil affects these signals may provide a way to engineer beneficial interactions between plants and microbes and to design effective soil amendments (additives that balance deficiencies in soil), according to the researchers. Plants use flavonoids as a defense mechanism against root pathogens and could manipulate the organic carbon they produce to interfere with signaling between microbes and other plants that compete for the same nutrients.

Overall, they showed that higher organic carbon levels in soil repressed flavonoid signals by up to 98%. In one set of experiments, interrupting the signals between legume plants and microbes sharply cut the formation of nitrogen nodules.

Rice graduate student Ilenne Del Valle began the study when she became interested in the subtle differences between the thousands of flavonoids and how they influence connections between plants and microbes in soil.

"We had studied how different soil amendments change how microbes communicate with one another," said Del Valle, co-lead author of the paper with former Cornell postdoctoral associate Tara Webster. "The next question was whether this was happening when the microbes communicate with plants.

"We knew that plants modulate symbiosis with microbes through flavonoid molecules," she said. "So we wanted to learn how flavonoids interact with soil amendments used for different purposes in agriculture."

Because she counts two Rice professors - Masiello and synthetic biologist Joff Silberg - as her advisers, she had access to tools from both disciplines to discover the mechanisms behind those subtleties.

"We came into this thinking there was going to be a big effect from biochar," Silberg said. "Biochar is charcoal made for agricultural amendment, and it is well-known to affect microbe-microbe signals. It has a lot of surface area, and flavonoids look sticky, too. People thought they would stick to the biochar.

"They didn't. Instead, we found that dissolved carbon moving through water in the soil was affecting signals," he said. "It was very different from all of our expectations."

The Rice and Cornell team set up experiments with soils from meadows, farms and forests and then mixed in three slightly different flavonoids: naringenin, quercetin and luteolin.

They found the most dramatic effects when dissolved carbons derived from plant matter or compost were present. Plants employ naringenin, a variant of the flavonoid that gives grapefruit its bitter taste, and luteolin, expressed by leaves and many vegetables, to call for microbial nitrogen fixation. These were most curtailed in their ability to find microbes. Quercetin, also found in foods like kale and red onions and used for defense against pests, did not suffer the same fate.

Masiello noted there's a cost for plants to connect with microbes in the soil.

"These relationships with symbionts are metabolically costly," she said. "Plants have to pay the microbes in photosynthesized sugar, and in exchange the microbes mine the soil for nutrients. Microbial symbionts can be really expensive subcontractors, sometimes taking a significant fraction of a plant's photosynthate.

"What Ilenne and Tara have shown is one mechanism through which plants can control whether they invest in expensive symbionts," she said. "Among a wide class of signaling compounds used by plants for many purposes, one specific signal related to nutrients is shut off by high soil organic matter, which is a slow-release source of nutrients. The plant signal that says 'come live with us' doesn't get through.

"This is good for plants because it means they don't waste photosynthate supporting microbial help they don't need. Ilenne and Tara have also shown that signals used for other purposes are slightly chemically modified so their transmission is not affected at the same rate."

The researchers checked flavonoid concentrations in soil with standard chromatography as well as unique fluorescent and gas biosensors, genetically modified microbes introduced in 2016 with the support of a Keck Foundation grant, which also backed the current project. The microbes release a gas when they sense a particular microbial interaction in opaque materials like soil.

"The gas sensor ended up being very useful in experiments that looked like tea, where we couldn't image fluorescent signals," Silberg said.

Research paper


Related Links
Rice University
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
First release of genetically engineered moth could herald new era of crop protection
Washington DC (SPX) Jan 30, 2020
A newly published study reports a successful, first-ever open-field release of a self-limiting, genetically engineered diamondback moth, stating that it paves the way for an effective and sustainable approach to pest control. The diamondback moth, also known as Plutella xylostella, is highly damaging to brassica crops such as cabbage, broccoli, cauliflower and canola. This new strain of diamondback moth, developed by Oxitec Ltd, is modified to control pest diamondback moth in a targeted manner. Th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Artificial intelligence to rebuild Iraq via second phase of the UNOSAT challenge

NASA, Partners name ocean studying satellite for noted Earth scientist

QinetiQ to play key role in maximising European capabilities in operational earth observation

Agreement on data utilization of earth observation satellite with FAO

FARM NEWS
Using artificial intelligence to enrich digital maps

Galileo now replying to SOS messages worldwide

China's international journal Satellite Navigation launched

FAA warns military training exercise could jam GPS signals in southeast, Caribbean

FARM NEWS
Yanomami leader pleads with world to save Amazon from Bolsonaro

Mexican conservationist found dead two weeks after disappearance

Photographer Claudia Andujar defends Brazil's Yanomami

Seeds of hope: Young volunteers replant Tunisia forests

FARM NEWS
New way of recycling plant-based plastics instead of letting them rot in landfill

Ecofriendly catalyst for converting methane into useful gases using light instead of heat

Principles for a green chemistry future

Acetone plus light creates a green jet fuel additive

FARM NEWS
Prodiel will build a 244 MWp facility in Chile for Atlas Renewable Energy

Arlington County partners with Dominion Energy to help achieve energy goals

Solar help powers indoor farming to deliver reliable and sustainable food

NEOM adopts pioneering solar dome technology for sustainable desalination project

FARM NEWS
UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

FARM NEWS
Protests in Germany as cabinet passes coal exit law

BlackRock coal divestment welcomed, scrutinised by insiders

Germany looks to step up coal exit timetable

New UK deep coal mine 'unnecessary': green group; As wind soars

FARM NEWS
China protests US bill threatening Tibet sanctions

Protest violence won't work, leading Hong Kong activist says

Proposed Hong Kong virus quarantine building firebombed during protest

As intensity fades, Hong Kong protesters mull tactics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.