. Energy News .




.
TIME AND SPACE
Quantum cats are hard to see
by Staff Writers
Calgary, Canada (SPX) Dec 21, 2011

Christoph Simon teaches physics at the University of Calgary. He is part of an international team of researchers who published a paper explaining the difficulty of detecting quantum effects. Credit: Courtesy of the University of Calgary.

Are there parallel universes? And how will we know? This is one of many fascinations people hold about quantum physics. Researchers from the universities of Calgary and Waterloo in Canada and the University of Geneva in Switzerland have published a paper this week in Physical Review Letters explaining why we don't usually see the physical effects of quantum mechanics.

"Quantum physics works fantastically well on small scales but when it comes to larger scales, it is nearly impossible to count photons very well. We have demonstrated that this makes it hard to see these effects in our daily life," says Dr. Christoph Simon, who teaches in the Department of Physics and Astronomy at the University of Calgary and is one of the lead authors of the paper entitled: Coarse-graining makes it hard to see micro-macro entanglement.

It's well known that quantum systems are fragile. When a photon interacts with its environment, even just a tiny bit, the superposition is destroyed.

Superposition is a fundamental principle of quantum physics that says that systems can exist in all their possible states simultaneously. But when measured, only the result of one of the states is given.

This effect is known as decoherence, and it has been studied intensively over the last few decades.

The idea of decoherence as a thought experiment was raised by Erwin Schrodinger, one of the founding fathers of quantum physics, in his famous cat paradox: a cat in a box can be both dead and alive at the same time.

But, according to the authors of this study, it turns out that decoherence is not the only reason why quantum effects are hard to see.

Seeing quantum effects requires extremely precise measurements. Simon and his team studied a concrete example for such a "cat" by using a particular quantum state involving a large number of photons.

"We show that in order to see the quantum nature of this state, one has to be able to count the number of photons in it perfectly," says Simon.

"This becomes more and more difficult as the total number of photons is increased. Distinguishing one photon from two photons is within reach of current technology, but distinguishing a million photons from a million plus one is not."

Related Links
University of Calgary
Understanding Time and Space




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
Physicists help narrow search for elusive Higgs boson
New York NY (SPX) Dec 14, 2011
New York University physicists are part of a research team that has narrowed the search for the Higgs boson, a sub-atomic particle that is a building block of the universe. In an announcement made in Geneva, scientists said they have found signs of its existence and narrowed the regions where the elusive particle could be. "If these first hints evolve into a conclusive observation of the H ... read more


TIME AND SPACE
SMOS detects freezing soil as winter takes grip

NASA Gears Up for Airborne Study of Earth's Radiation Balance

Study Shows More Shrubbery in a Warming World

Astrium awarded Sentinel 5 Precursor contract

TIME AND SPACE
Lockheed Martin Delivers GPS 3 Pathfinder Satellite to Denver on Schedule

Galileo in tune as first navigation signal transmitted to Earth

Glonass satnav system targets Latin America and India

Lightweight GPS tags help research track animals of all sizes

TIME AND SPACE
The case of the dying aspens

Little headway in Durban on deforestation: experts

Climate change blamed for dead trees in Africa

Ecologists fume as Brazil Senate OKs forestry reform

TIME AND SPACE
Chemicals and biofuel from wood biomass

Turning Pig Manure into Oil Fosters Sustainability in a Crowded World

US Biofuel Camelina Production Set to Soar

Switchgrass as bioenergy feedstock

TIME AND SPACE
Arizona YMCA's Go Solar

Recurrent Energy Secures $250M Financing For 200MW of Solar PV Projects

Google turns up investment in solar power

Discovery of a 'dark state' could mean a brighter future for solar energy

TIME AND SPACE
Eneco appoints Natural Power as Owner's Engineer on 51MW Lochluichart wind farm

Iowa State engineers study how hills, nearby turbines affect wind energy production

More than twenty UK wind farm sites adopt Natural Power's ForeSite wind forecasting service

Lawrence Livermore ramps up wind energy research

TIME AND SPACE
Gloucester, Yanzhou in giant $8bn coal play: report

Four trapped miners found dead in China: Govt

Five rescued from collapsed Chinese mine

Coal mine collapse traps 12 in China

TIME AND SPACE
China puts rights lawyer back in jail: Xinhua

Chinese villagers threaten government office march

Beijing orders microbloggers to register real names

China villagers warned against protest march


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement