Energy News  
ICE WORLD
Radar reveals meltwater's year-round life under Greenland ice
by Staff Writers
New York NY (SPX) Jan 10, 2017


Meltwater from the Greenland ice sheet can travel through channels in the ice to reach bedrock; a new study show where subglacial water goes. Here, water plunges down a moulin, or hole in the ice. Image courtesy Marco Tedesco/Lamont-Doherty Earth Observatory. For a larger version of this image please go here.

When summer temperatures rise in Greenland and the melt season begins, water pools on the surface, and sometimes disappears down holes in the ice. That water may eventually reach bedrock, creating a slipperier, faster slide for glaciers. But where does it go once it gets there, and what happens to it in the winter? A new study helps answer these questions.

Scientists have been able to observe liquid water at single points by drilling holes, but those observations are limited. An improved technique developed by a graduate student at Columbia University's Lamont-Doherty Earth Observatory and her colleagues is now expanding that view across entire regions, and across seasons for the first time, by making it possible to use airborne ice-penetrating radar to reveal meltwater's life under the ice throughout the year.

The first results, just published in the journal Geophysical Research Letters, reveal extensive winter water storage beneath the ice. They suggest that glaciers' response to melting depends not only on the rate at which meltwater flows down, but also on the amount of water stored beneath the ice through the winter, and on the topography and permeability of the land below, said the study's lead author, Columbia graduate student Winnie Chu.

"The distribution of meltwater evolves constantly, switching from one location to another," said Chu.

"By knowing how this distribution changes seasonally, we can better understand the spatial linkage between ice and water flow." Chu said that more meltwater is produced as temperatures rise, and the study suggests that Greenland has the potential to store some of it at the base of the ice. This could potentially mediate the impact of meltwater on summer ice flow by maintaining stable subglacial water pressures through the year, she said.

Greenland's ice sheet has a wide range of temperatures and impurities that cause the ice to freeze in different ways, and those variations have made it difficult for ice-penetrating radar to identify pockets of water beneath the ice. Chu and her colleagues developed a way to correct for those variations by using 3D thermomechanical ice-sheet models and knowledge of the ice sheet's chemistry to bring out the reflectivity that indicates water in radar data.

In the study, the researchers describe where water was prevalent inside the ice at the start of the melt season and where it was present at the end of winter in Russell Glacier and neighboring Isunnguata Sermia, in western Greenland. They showed that early in the melt season, most of the meltwater reaching bedrock was along sediment-filled troughs beneath the glaciers. In contrast, during the winter, the bulk of the region's subglacial water could be seen pooling in higher bedrock ridges, while the lower-elevation troughs were mostly dry.

The scientists suspect that during warmer weather, water pressure opens drainage systems in the ice, allowing meltwater from the surface to flow through to the troughs below. Those channels may close in the winter as less water pours in and water pressure decreases.

In the troughs, the sediment-filled floor allows for better drainage. "Any remaining subglacial water then likely continues to seep through groundwater drainage, leaving little wintertime storage at the ice-bed interface," the authors write. But the ridges are made up of less permeable material, so water can pool on them.

The effect of water is evident in the changing speed of the glaciers during the year. During the 2010 melt season, Russell Glacier flowed more than twice as fast as it did at the end of the following winter, the authors write. The glacier speeds up in early summer, suggesting water pressure rises rapidly there, Chu said. It decelerates quickly at the end of summer, suggesting that the formation of channels in the ice creates more efficient, faster drainage of the meltwater from the glacier bed, the scientists write.

Neighboring Isunnguata Sermia accelerates more slowly. That could be associated with its apparent widespread subglacial water storage capacity, which may be maintaining water pressures through the winter, Chu said. Russell Glacier, in contrast, has less winter water storage and would experience a greater increase in water pressure at the start of the melt season.

"Our findings suggest that the winter subglacial hydrological state could pre-condition the glacier response to additional meltwater in the following summer," Chu said.

The technique used in the study provides a clearer view of how water moves beneath the ice than any other existing method, said Joseph MacGregor, a glaciologist and geophysicist at NASA-Goddard Space Flight Center who was not involved in the study.

"We have prevailing ideas of how water flows on the surface of ice sheets, through ice sheets, and under ice sheets. What we don't have are great observations of where that water is beneath the ice most of the time," MacGregor said. "This result changes that state of affairs. It also demonstrates the value of airborne remote sensing for testing fundamental glaciological hypotheses."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Earth Institute at Columbia University
Beyond the Ice Age






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Unlucky polar bears beset by toxins too
Paris (AFP) Jan 5, 2017
Polar bears just can't catch a break. Already struggling to cope with climate change, the giant Arctic carnivores also face a chemical poisoning risk 100 times above levels considered safe for adult bears, according to a study released Thursday. For bear cubs feeding on contaminated milk, that risk is 1,000-fold greater, researchers reported in the journal Environmental Toxicology and Ch ... read more


ICE WORLD
First colour image for joint UK and Algerian CubeSat

Newly proposed reference datasets improve weather satellite data quality

Are we exploring in the wrong direction

Fossil fuel formation: Key to atmosphere's oxygen?

ICE WORLD
China to offer global satellite navigation service by 2020

Austrian cows swap bells from 'hell' for GPS

Russia, China Making Progress in Synchronization of GLONASS, BeiDou Systems

Alpha Defence Company To Make Navigation Satellites For ISRO

ICE WORLD
Philippine minister says Dora can't explore pristine Palawan

Study: Trees with thicker bark are more resistant to fire

Measuring trees with the speed of sound

In cool forests, foraging bees prefer the warmth of darker flower petals

ICE WORLD
Dual-purpose biofuel crops could extend production, increase profits

Open-source plant database confirms top US bioenergy crop

WSU researchers discover unique microbial photosynthesis

Potential biofuel crops in Hawaii may successfully sequester carbon in soil

ICE WORLD
An ordered route to improved performance of solar cells

U.S. offshore regulator joins solar power trade group

Off-grid power in remote areas will require special business model to succeed

Vortex to acquire a 365 MW solar energy portfolio in UK

ICE WORLD
New York sets bar high for offshore wind

The answer is blowing in the wind

French power group aims to double wind capacity

New rules for micro-grids in Alberta

ICE WORLD
People aren't the only beneficiaries of power plant carbon standards

China to cut coal capacity by 800 million tonnes by 2020

Norway fund blacklists more coal groups over climate concerns

Black coal, thin pickings: China's miners face decline

ICE WORLD
Human rights in Hong Kong at worst level for 20 years

China graft drive has punished 1.2 million: watchdog

Hong Kong's former leader abused power: prosecution

Pro-democracy Hong Kong lawmaker condemns 'violent attacks'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.