. Energy News .




NANO TECH
Researchers produce nanostructures with potential to advance energy devices
by Staff Writers
Tempe AZ (SPX) Sep 13, 2013


Lithium-ion batteries are one of the leading types of rechargeable batteries. They are widely used in consumer products, particularly portable electronics, and are being increasingly used in electric vehicles and aerospace technologies.

New types of nanostructures have shown promise for applications in electrochemically powered energy devices and systems, including advanced battery technologies. One process for making these nanostructures is dealloying, in which one or more elemental components of an alloy are selectively leached out of materials.

Arizona State University researchers Karl Sieradzki and Qing Chen have been experimenting with dealloying lithium-tin alloys, and seeing the potential for the nanostructures they are producing to spark advances in lithium-ion batteries, as well as in expanding the range of methods for creating new nanoporous materials using the dealloying process.

Their research results are detailed in a paper they co-authored that was recently published on the website of the prominent science and engineering journal Nature Materials (Advance online publication).

Read the article abstract here.

Sieradzki is a materials scientist and professor in the School for Engineering of Matter, Transport and Energy, one of ASU's Ira A. Fulton Schools of Engineering.

Chen earned his doctoral degree in materials science at ASU last spring and is now a postdoctoral research assistant.

Nanoporous materials made by dealloying are comprised of nanometer-scale zigzag holes and metal. These structures have found application in catalysis (used to increase the rate of chemical reactions) as well as actuation (used to mechanically move or control various mechanisms or systems) and supercapacitors (which provide a large amount of high electrical capacity in small devices).

They could also improve the performance of electrochemical sensing technology and provide more resilient radiation damage-resistant materials.

The nanostructures that Sieradzki and Chen have produced by dealloying lithium-tin alloys allows for more efficient transport and storage of the electric charge associated with lithium, while the small size prevents fracture of the tin reservoir that serves as a storage medium for lithium.

Lithium-ion batteries are one of the leading types of rechargeable batteries. They are widely used in consumer products, particularly portable electronics, and are being increasingly used in electric vehicles and aerospace technologies.

Sieradzki and Chen say that with more research and development the porous nanostructures produced by dealloying lithium alloys could provide a lithium-ion battery with improved energy-storage capacity and a faster charge and discharge - enabling it to work more rapidly.

One major advantage is that the porous nanostructures providing this electrochemical power boost can evolve spontaneously during tunable dealloying processing conditions. This, Sieradzki explains, opens up possibilities for developing new nanomaterials that could have a multitude of technological applications.

"There are a lot of metals that scientists and engineers have not be able to make nanoporous," he says. "But it turns out that with lithium you can lithiate and de-lithiate a lot of materials, and do it easily at room temperature. So this could really broaden the spectrum for what's possible in making new nanoporous materials by dealloying."

.


Related Links
Arizona State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures
Los Angeles CA (SPX) Sep 10, 2013
Move over, silicon. In a breakthrough in the quest for the next generation of computers and materials, researchers at USC have solved a longstanding challenge with carbon nanotubes: how to actually build them with specific, predictable atomic structures. "We are solving a fundamental problem of the carbon nanotube," said Chongwu Zhou, professor in the Ming Hsieh Department of Electrical En ... read more


NANO TECH
Astrium Services targeting geo information business growth

Astrium to provide new satellite imagery for Google Maps and Google Earth

New insights solve 300-year-old problem: The dynamics of the Earth's core

After a Fire, Before a Flood: NASA's Landsat Directs Restoration to At-Risk Areas

NANO TECH
Raytheon UK receives first order for its latest GPS Anti-Jam prototype

Next Boeing GPS IIF Satellite Arrives at Cape Canaveral for Launch

GPS III And OCX Satellite Launch And Early Orbit Operations Demonstrated

USAF Institute of Technology signs Agreement on new GPS technology development with Locata

NANO TECH
Heavily logged forests still valuable for tropical wildlife

US slaps high dumping tariffs on Chinese wood products

Amazon deforestation due in part to soybean growing

An unprecedented threat to Peru's cloud forests

NANO TECH
Sharing the risks/costs of biomass crops

Indy 500 race cars showcase green fuels

Researchers Read the Coffee Grounds and Find a Promising Energy Resource For the Future

Professor and student develop device to detect biodiesel contamination

NANO TECH
Hydrogen Fuel From Sunlight

Stanford scientists calculate the energy required to store wind and solar power on the grid

Penn scientists demonstrate new method for harvesting energy from light

NRL Achieves Highest Open-Circuit Voltage for Quantum Dot Solar Cells

NANO TECH
Moventas significantly expands wind footprint

Windswept German island gives power to the people

No evidence of residential property value impacts near US wind turbines

French court rejects planned wind farm near Mont Saint Michel

NANO TECH
Calculating the true cost of a ton of mountaintop coal

Ukraine designates 45 coal mines for sale in privatization push

German coal mine turns village into ghost town

India's 'Coalgate' deepens

NANO TECH
Democrats lose out in Macau elections

Dalai Lama says China's Tibet policy now 'more realistic'

Hong Kong's hunt for homes threatens green spaces

Prominent liberal businessman arrested in China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement