Energy News  
NANO TECH
Researchers report new light-activated micro pump
by Staff Writers
Houston TX (SPX) Mar 15, 2019

Researchers Jiming Bao, associate professor of electrical and computer engineering at the University of Houston, left, and Wei-Kan Chu, and project leader at the Texas Center for Superconductivity at UH, have reported a laser-driven photoacoustic microfluidic pump, capable of moving fluids in any direction without moving parts or electrical contacts.

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution - a laser-driven photoacoustic microfluidic pump, capable of moving fluids in any direction without moving parts or electrical contacts.

The work is described in the Proceedings of the National Academy of Sciences.

Using a plasmonic quartz plate implanted with gold atoms, the researchers demonstrated the ability to move liquids by using a laser to generate an ultrasonic wave.

"We can use the laser to make liquids move in any direction," said Jiming Bao, associate professor of electrical and computer engineering at the University of Houston and lead author on the paper.

The work is based on a new optofluidics principle discovered by Bao's lab and reported in 2017. That work explained how a laser could be used to trigger a stream of liquid, coupling photoacoustics with acoustic streaming.

The latest work involved fabricating a quartz substrate implanted with 1016 gold atoms, or ten thousand trillion atoms, per square centimeter and testing whether a laser pulse could generate an ultrasonic wave capable of creating a liquid stream.

The quartz plate - about the size of a fingernail - was implanted with gold nanoparticles; when a pulsed laser hits the plate, the gold nanoparticles generate an ultrasonic wave, which then drives the fluid via acoustic streaming.

"This new micropump is based on a newly discovered principle of photoacoustic laser streaming and is simply made of an Au [gold] implanted plasmonic quartz plate," the researchers wrote. "Under a pulsed laser excitation, any point on the plate can generate a directional long-lasting ultrasound wave which drives the fluid via acoustic streaming."

The work could have practical implications, from biomedical devices and drug delivery to microfluidic and optofluidic research. Wei-Kan Chu, a physicist and project leader at the Texas Center for Superconductivity at UH, said the true value isn't yet known. "We would like to better understand the mechanisms of this, and that could open up something beyond our imagination."

The device was fabricated in Chu's lab; he is a co-author, along with Nzumbe Epie, Xiaonan Shan and Dong Liu, all of UH; Shuai Yue, Feng Lin and Zhiming Wang of the University of Electronic Science and Technology of China; Qiuhui Zhang of Henan University of Engineering; and Suchuan Dong of Purdue University.

The nanoparticles offer an almost limitless number of targets for the laser, which can be aimed far more precisely than a mechanical micropump, Bao said.

"The mechanisms of how and why this works are not yet very clear," Chu said. "We need to understand the science better in order to develop the potential of its unforeseeable applications."


Related Links
University of Houston
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Defects help nanomaterial soak up more pollutant in less time
Houston TX (SPX) Mar 14, 2019
Cleaning pollutants from water with a defective filter sounds like a non-starter, but a recent study by chemical engineers at Rice University found that the right-sized defects helped a molecular sieve soak up more perfluorooctanesulfonic acid (PFOS) in less time. In a study in the American Chemical Society journal ACS Sustainable Chemistry and Engineering, Rice University researchers Michael Wong, Chelsea Clark and colleagues showed that a highly porous, Swiss cheese-like nanomaterial called a me ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
New key players in the methane cycle

High CO2 levels can destabilize marine layer clouds

On its 5th Anniversary, GPM Still Right as Rain

D-Orbit Signs Contract for launch and deployment services with Planet Labs

NANO TECH
IAI unveils improved anti-jamming GPS

Orolia launches the world's first Galileo enabled PLB

Angry Norway says Russia jamming GPS signals again

Kite-blown Antarctic explorers make most southerly Galileo positioning fix

NANO TECH
Gabon seizes haul of 'sacred' wood: NGO

Peru opens military base to protect Amazon from deforestation

Culturally sensitive conservation approaches needed to protect Ethiopian church forests

As sea level rises, wetlands crank up their carbon storage

NANO TECH
Engineered microbe may be key to producing plastic from plants

Turning algae into fuel

Capturing bacteria that eat and breathe electricity

Climate rewind: Scientists turn carbon dioxide back into coal

NANO TECH
Light from an exotic crystal semiconductor could lead to better solar cells

Energise Africa launches UK crowd campaign to raise funds for solar in Africa

Improving solar cell efficiency with a bucket of water

Photon Energy connects another 8 solar farms to Hungary's energy grid

NANO TECH
Improved hybrid models for multi-step wind speed forecasting

UK targets surge in offshore wind power

Ingeteam commissioned over 4GW of wind converters in 2018

Sulzer Schmid's new technology platform slashes cost of drone-based rotor blade inspections

NANO TECH
China investigates officials after deadly mine accident

Mining halts in SW China after triple quakes, protests

Australia denies China ban on coal imports amid tensions

Australia, China deny ban on coal imports amid tensions

NANO TECH
US envoy defends his criticism of Chinese religious persecution

Tibet supporters in India mark 60 years since uprising

The house always wins? Few trade war jitters as Macau's casinos boom

Fired cancer patient exposes plight of Hong Kong's foreign maids









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.