Energy News  
ENERGY TECH
Revitalizing batteries by bringing 'dead' lithium back to life
by Staff Writers
Stanford CA (SPX) Jan 05, 2022

An animation shows how charging and discharging a lithium battery test cell causes an island of "dead," or detached, lithium metal to creep back and forth between the electrodes. The movement of lithium ions back and forth through the electrolyte creates areas of negative (blue) and positive (red) charge at the ends of the island, which swap places as the battery charges and discharges. Lithium metal accumulates at the negative end of the island and dissolves at the positive end; this continual growth and dissolution causes the back-and-forth movement seen here. SLAC and Stanford researchers discovered that adding a brief, high-current discharging step right after charging the battery nudges the island to grow in the direction of the anode, or negative electrode. Reconnecting with the anode brings the island's dead lithium back to life and increases the battery's lifetime by nearly 30%.

Researchers at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University may have found a way to revitalize rechargeable lithium batteries, potentially boosting the range of electric vehicles and battery life in next-gen electronic devices.

As lithium batteries cycle, they accumulate little islands of inactive lithium that are cut off from the electrodes, decreasing the battery's capacity to store charge. But the research team discovered that they could make this "dead" lithium creep like a worm toward one of the electrodes until it reconnects, partially reversing the unwanted process.

Adding this extra step slowed the degradation of their test battery and increased its lifetime by nearly 30%.

"We are now exploring the potential recovery of lost capacity in lithium-ion batteries using an extremely fast discharging step," said Stanford postdoctoral fellow Fang Liu, the lead author of a study published Dec. 22 in Nature.

Lost connection
A great deal of research is looking for ways to make rechargeable batteries with lighter weight, longer lifetimes, improved safety, and faster charging speeds than the lithium-ion technology currently used in cellphones, laptops and electric vehicles. A particular focus is on developing lithium-metal batteries, which could store more energy per volume or weight. For example, in electric cars, these next-generation batteries could increase the mileage per charge and possibly take up less trunk space.

Both battery types use positively charged lithium ions that shuttle back and forth between the electrodes. Over time, some of the metallic lithium becomes electrochemically inactive, forming isolated islands of lithium that no longer connect with the electrodes. This results in a loss of capacity and is a particular problem for lithium-metal technology and for the fast charging of lithium-ion batteries.

However, in the new study, the researchers demonstrated that they could mobilize and recover the isolated lithium to extend battery life.

"I always thought of isolated lithium as bad, since it causes batteries to decay and even catch on fire," said Yi Cui, a professor at Stanford and SLAC and investigator with the Stanford Institute for Materials and Energy Research (SIMES) who led the research. "But we have discovered how to electrically reconnect this 'dead' lithium with the negative electrode to reactivate it."

Creeping, not dead
The idea for the study was born when Cui speculated that applying a voltage to a battery's cathode and anode could make an isolated island of lithium physically move between the electrodes - a process his team has now confirmed with their experiments.

The scientists fabricated an optical cell with a lithium-nickel-manganese-cobalt-oxide (NMC) cathode, a lithium anode and an isolated lithium island in between. This test device allowed them to track in real time what happens inside a battery when in use.

They discovered that the isolated lithium island wasn't "dead" at all but responded to battery operations. When charging the cell, the island slowly moved towards the cathode; when discharging, it crept in the opposite direction.

"It's like a very slow worm that inches its head forward and pulls its tail in to move nanometer by nanometer," Cui said. "In this case, it transports by dissolving away on one end and depositing material to the other end. If we can keep the lithium worm moving, it will eventually touch the anode and reestablish the electrical connection."

Boosting lifetime
The results, which the scientists validated with other test batteries and through computer simulations, also demonstrate how isolated lithium could be recovered in a real battery by modifying the charging protocol.

"We found that we can move the detached lithium toward the anode during discharging, and these motions are faster under higher currents," said Liu. "So we added a fast, high-current discharging step right after the battery charges, which moved the isolated lithium far enough to reconnect it with the anode. This reactivates the lithium so it can participate in the life of the battery."

She added, "Our findings also have wide implications for the design and development of more robust lithium-metal batteries."

This work was funded by the DOE Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under the Battery Materials Research (BMR), Battery 500 Consortium and eXtreme Fast Charge Cell Evaluation of Li-ion batteries (XCEL) programs.

Research Report: Dynamic spatial progression of isolated lithium during battery operations


Related Links
SLAC National Accelerator Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
MIT engineers produce the world's longest flexible fiber battery
Boston MA (SPX) Dec 21, 2021
Researchers have developed a rechargeable lithium-ion battery in the form of an ultra-long fiber that could be woven into fabrics. The battery could enable a wide variety of wearable electronic devices, and might even be used to make 3D-printed batteries in virtually any shape. The researchers envision new possibilities for self-powered communications, sensing, and computational devices that could be worn like ordinary clothing, as well as devices whose batteries could also double as structural pa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
UK sets New Year's Day temperature record

UK records warmest ever New Year's Eve

China receives data from newly launched resource satellite

China launches new resource satellite

ENERGY TECH
Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

Galileo pathfinder de-commissioned after 16 years of in-orbit service

ENERGY TECH
Loggers threaten Papua New Guinea's unique forest creatures

Canada announces challenge to US lumber tariffs

European stores pull products linked to Brazil deforestation

Soils in old-growth treetops can store more carbon than soils under our feet

ENERGY TECH
From the oilfield to the lab: How a special microbe turns oil into gases

Estonia's wood pellet industry stokes controversy

Study shows how waste can be converted into materials for advanced industries

A system that combines solar energy and a chemical reactor to get more from biomass has been designed

ENERGY TECH
Russian company develops method for effective transfer of solar energy to Earth

AU researchers develop solar-powered tech to make "forever chemicals" harmless

Templating approach stabilizes 'ideal' material for alternative solar cells

Engineering next generation solar powered batteries

ENERGY TECH
'Ocean battery' targets renewable energy dilemma

Share of German energy from renewables to fall in 2021

DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

ENERGY TECH
End of an era nears for Berlin's coal stoves

Two dead, 20 trapped workers rescued from Chinese mine

Purity or power: India's coal quandary

African nations cling to fossil fuels despite climate call

ENERGY TECH
Beijing's smog woes cast pall over 'green' Winter Olympics

Shuttered Hong Kong news outlet's editors charged with sedition

China says celebrities have 10 days to cough up unpaid taxes

China mulls bill to tackle workplace discrimination against women









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.