. Energy News .




FLORA AND FAUNA
Scientists discover that shape matters in DNA nanoparticle therapy
by Staff Writers
Seattle WA (SPX) Oct 15, 2012

illustration only

Researchers from Johns Hopkins and Northwestern universities have discovered how to control the shape of nanoparticles that move DNA through the body and have shown that the shapes of these carriers may make a big difference in how well they work in treating cancer and other diseases.

This study, to be published in the Oct. 12 online edition of the journal Advanced Materials, is also noteworthy because this gene therapy technique does not use a virus to carry DNA into cells. Some gene therapy efforts that rely on viruses have posed health risks.

"These nanoparticles could become a safer and more effective delivery vehicle for gene therapy, targeting genetic diseases, cancer and other illnesses that can be treated with gene medicine," said Hai-Quan Mao, an associate professor of materials science and engineering in Johns Hopkins' Whiting School of Engineering.

Mao, co-corresponding author of the Advanced Materials article, has been developing nonviral nanoparticles for gene therapy for a decade. His approach involves compressing healthy snippets of DNA within protective polymer coatings. The particles are designed to deliver their genetic payload only after they have moved through the bloodstream and entered the target cells. Within the cells, the polymer degrades and releases DNA. Using this DNA as a template, the cells can produce functional proteins that combat disease.

A major advance in this work is that Mao and his colleagues reported that they were able to "tune" these particles in three shapes, resembling rods, worms and spheres, which mimic the shapes and sizes of viral particles. "We could observe these shapes in the lab, but we did not fully understand why they assumed these shapes and how to control the process well," Mao said. These questions were important because the DNA delivery system he envisions may require specific, uniform shapes.

To solve this problem, Mao sought help about three years ago from colleagues at Northwestern. While Mao works in a traditional wet lab, the Northwestern researchers are experts in conducting similar experiments with powerful computer models.

Erik Luijten, associate professor of materials science and engineering and of applied mathematics at Northwestern's McCormick School of Engineering and Applied Science and co-corresponding author of the paper, led the computational analysis of the findings to determine why the nanoparticles formed into different shapes.

"Our computer simulations and theoretical model have provided a mechanistic understanding, identifying what is responsible for this shape change," Luijten said. "We now can predict precisely how to choose the nanoparticle components if one wants to obtain a certain shape."

The use of computer models allowed Luijten's team to mimic traditional lab experiments at a far faster pace. These molecular dynamic simulations were performed on Quest, Northwestern's high-performance computing system. The computations were so complex that some of them required 96 computer processors working simultaneously for one month.

In their paper, the researchers also wanted to show the importance of particle shapes in delivering gene therapy. Team members conducted animal tests, all using the same particle materials and the same DNA. The only difference was in the shape of the particles: rods, worms and spheres.

"The worm-shaped particles resulted in 1,600 times more gene expression in the liver cells than the other shapes," Mao said. "This means that producing nanoparticles in this particular shape could be the more efficient way to deliver gene therapy to these cells."

The particle shapes used in this research are formed by packaging the DNA with polymers and exposing them to various dilutions of an organic solvent. DNA's aversion to the solvent, with the help of the team's designed polymer, causes the nanoparticles to contract into a certain shape with a "shield" around the genetic material to protect it from being cleared by immune cells.

Lead authors of the Advanced Materials paper are Wei Qu, a graduate student in Luijten's research group at Northwestern, and Xuan Jian, who was a doctoral student in Mao's lab. Along with Mao and Luijten, the remaining co-authors of the paper, all from Johns Hopkins, are Deng Pan, who worked on the project as an undergraduate; Yong Ren, a postdoctoral fellow; John-Michael Williford, a biomedical engineering doctoral student; and Honggang Cui, an assistant professor in the department of chemical and biomolecular engineering.

Related Links
Northwestern University
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Cambrian fossil pushes back evolution of complex brains
Tucson AZ (SPX) Oct 11, 2012
The remarkably well-preserved fossil of an extinct arthropod shows that anatomically complex brains evolved earlier than previously thought and have changed little over the course of evolution. According to University of Arizona neurobiologist Nicholas Strausfeld, who co-authored the study describing the specimen, the fossil is the earliest known to show a brain. Embedded in mudstones depo ... read more


FLORA AND FAUNA
GMES for Europe

Boeing Releases Updated Geospatial Data Management Tool

First images from e2v imaging sensors on SPOT 6 Earth observation satellite

New Commercial Imaging Spacecraft Progressing at Lockheed Martin as IKONOS Satellite Achieves 13 Years in Operations

FLORA AND FAUNA
Two more satellites for the Galileo system

Deployment of Europe's Galileo constellation continues

Soyuz orbits two Galileo satellites for Arianespace

Galileo launch brings Europe's satellite navigation system another step closer

FLORA AND FAUNA
Research shows legume trees can fertilize and stabilize maize fields, generate higher yields

Native Plant Fares Well in Pilot Green Roof Research Study

China to up reforestation

SciTechTalk: Amazon's 'razor blade' choice

FLORA AND FAUNA
Which Biofuels Hold the Most Promise for the Future

Palm Oil Massive Source of Carbon Dioxide

Super-microbes engineered to solve world environmental problems

Computational Model IDs Potential Pathways to Improve Plant Oil Production

FLORA AND FAUNA
Interior Greenlights New Era for Solar Development on Public Lands in the Southwest

India Needs Concentrated Solar Power to Achieve Safer, More Reliable Energy Future

Motech Americas launches UL 1,000 Volt Certified Modules for PV Installations in North America

Germany raises electricity charge to finance renewables

FLORA AND FAUNA
DNV KEMA awarded framework agreement for German wind project developer SoWiTec

Sandia Labs benchmark helps wind industry measure success

Bigger wind turbines make greener electricity

EU wind power capacity reaches 100GW

FLORA AND FAUNA
Australian coal projects mega polluters?

Australian coal basin may be top 10 polluter: Greenpeace

Coal mining jobs slashed in Australia

China mine accident kills 10

FLORA AND FAUNA
Beverage tycoon tops Forbes' China rich list

China Nobel winner defends prize -- and Mao

Former Chinese official sheds light on dark side of power

Chinese dissident author savages Beijing at German awards


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement