Energy News  
TECH SPACE
Scientists turn fossil fuel pollutant into usable industrial chemical
by Brooks Hays
Washington (UPI) Nov 22, 2019

Scientists have developed a new material, called a metal-organic framework, that successfully captures nitrogen dioxide, or NO2, a toxic pollutant produced by fossil fuel combustion.

The new gas-capturing technology can extract NO2 from the exhaust of a power plant or factory, according to the latest research, published this week in the journal Nature Chemistry. The NO2 captured by the metal-organic framework can be converted easily into nitric acid, which is used to make fertilizer, rocket propellant, nylon and more.

Metal-organic frameworks are metal compounds with three-dimensional lattice structures featuring nano-sized pores. The new framework is called MFM-520, and scientists characterized the shape and size of of its internal pores -- the pockets where NO2 gas becomes trapped -- using neutron scattering and synchrotron X-ray diffraction.

Material scientists can tweak metal-organic frameworks to trap a diversity of compounds. Most metal compounds are designed to remove pollutants, but researchers also have designed frameworks to remove remove salt and metal ions from seawater.

MFM-520 is designed to capture NO2. The material works at ambient pressures and temperatures, and even can trap nitrogen dioxide at low concentrations.

The process for degassing the material, a treatment with water in air, also works to convert the NO2 into nitric acid, a valuable industrial chemical.

"This is the first MOF to both capture and convert a toxic, gaseous air pollutant into a useful industrial commodity," lead study author Sihai Yang, a senior lecturer in chemistry at the University of Manchester in England, said in a news release.

"It is also interesting that the highest rate of NO2 uptake by this MOF occurs at around 45 degrees Centigrade, which is about the temperature of automobile exhausts."

Because the nitric acid market totals more than $2.5 billion, the new technology could prove profitable for producers of the MOF, as well as for industrial sources of NO2.

By studying how exactly the nitrogen dioxide gas molecules move through the material and become trapped, scientists will be better able to tweak metal-organic framework materials for capturing other toxins and pollutants.

"The characterization of the mechanism responsible for the high, rapid uptake of NO2 will inform future designs of improved materials to capture air pollutants," said Jiangnan Li, one of the study's authors and a doctoral student at Manchester.


Related Links
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
A four-way switch promises greater tunability of layered materials
Oak Ridge TN (SPX) Nov 19, 2019
A scientific team from the Department of Energy's Oak Ridge National Laboratory and Vanderbilt University has made the first experimental observation of a material phase that had been predicted but never seen. The newly discovered phase couples with a known phase to enable unique control over material properties - an advance that paves the way to eventual manipulation of electrical conduction in two-dimensional (2D) materials such as graphene. The team made the discovery using a layered, copper-co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New Moon-seeking sensor aims to improve Earth Observations

China launches new remote-sensing satellite

Ozone hole set to close

CloudFerro is contracted by DLR to provide the next stage of CODE-DE

TECH SPACE
Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

UK should ditch plans for GPS to tival Galileo

TECH SPACE
Romania's forests under mounting threat -- along with rangers

The forests of the Amazon are an important carbon sink

Indigenous leaders urge EU to protect forest homeland

Human activities are drying out the Amazon

TECH SPACE
Researchers design an improved pathway to carbon-neutral plastics

France reverse palm oil tax break after outcry

France's Total faces outcry after winning back palm oil tax break

Scientists create 'artificial leaf' that turns carbon into fuel

TECH SPACE
New hybrid device can both capture and store solar energy

Canadian Solar achieves commercial operation on 53.4 mwp project in Japan

JA Solar supplies 134MW of high-efficiency PERC Double-glass Modules for solar plants in Jordan

NextEra newest solar plant now powering customers in South Carolina

TECH SPACE
Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

Breaking down controls to better control wind energy systems

Mainstream Renewable closes $580M wind and solar financing deal in Chile

TECH SPACE
China adds coal power despite climate pledge: report

Planned fossil fuel output swamps Paris climate goals

15 killed in north China mine blast

Asia must quit 'coal addiction': UN chief

TECH SPACE
China says only it can rule on Hong Kong constitution; Lam says students must surrender

Dozens of Hong Kong protesters make daring campus breakout

Anger, guilt stir Hong Kong's white collar rebels; 500 Govt supporters march

HK activist urges Germany to halt Chinese army training









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.