Energy News  
SOLAR SCIENCE
Sounding rocket CLASP2 elucidates solar magnetic field
by Staff Writers
Tokyo, Japan (SPX) Feb 19, 2021

Measuring the magnetic field strength at four different heights (horizontal planes) by using data from the CLASP2 and Hinode space telescopes allowed astronomers to map the spreading of magnetic field lines (shown in green) in the chromosphere.

Cooperative operations between a solar observation satellite and a sounding-rocket telescope have measured the magnetic field strength in the photosphere and chromosphere above an active solar plage region.

This is the first time that the magnetic field in the chromosphere has been charted all the way up to its top. This finding brings us closer to understanding how energy is transferred between layers of the Sun.

Despite being the brightest object in the sky, the Sun still holds many mysteries for astronomers. It is generally believed that magnetic fields play an important role in heating the solar corona, but the details of the process are still unclear.

To solve this mystery it is important to understand the magnetic field in the chromosphere, which is sandwiched between the corona and the photosphere, the visible surface of the Sun.

An international team led by Ryohko Ishikawa, an assistant professor at the National Astronomical Observatory of Japan, and Javier Trujillo Bueno, a professor at the Instituto de Astrofisica de Canarias, analyzed data collected by the CLASP2 sounding rocket experiment over twosix-and-a-half-minutes on April 11, 2019.

They determined the longitudinal component of the magnetic field above an active region plage and its surroundings by analyzing the signature that the magnetic field imprinted on ultraviolet light from the chromosphere.

The unique high precision data from CLASP2 allowed the team to determine the magnetic field strengths in the lower, mid, and upper regions of the chromosphere. Simultaneously acquired data from the Japanese solar observation satellite Hinode provided information about the magnetic field in the plage itself in the photosphere.

The team found that the plage magnetic field is highly structured in the photosphere but expands, rapidly merging and spreading horizontally, in the chromosphere. This new picture brings us closer to understanding how magnetic fields transfer energy to the corona from the lower layers of the Sun.

Research Report: "Mapping Solar Magnetic Fields from the Photosphere to the Base of the Corona"


Related Links
National Institutes Of Natural Sciences
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR SCIENCE
Ball Aerospace to build spacecraft for NASA Heliophysics Science Mission
Boulder CO (SPX) Feb 10, 2021
Ball Aerospace was selected to build the spacecraft for NASA's Global Lyman-alpha Imager of the Dynamic Exosphere (GLIDE) heliophysics science Mission of Opportunity. GLIDE will study variability in Earth's exosphere, the upper reaches of Earth's atmosphere where it touches space, by tracking far ultraviolet light emitted from hydrogen. Dr. Lara Waldrop of the University of Illinois Urbana-Champaign is the principal investigator for GLIDE and University of California, Berkeley (UC Berkeley) is man ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Measuring photosynthesis on Earth from space

NASA-funded network tracks the recent rise and fall of ozone depleting pollutants

We found the first Australian evidence of a major shift in Earth's magnetic poles

NOAA selects Woolpert to collect Topo-Bathy Lidar, imagery over Hawaiian islands

SOLAR SCIENCE
BAE Systems announces $247M contract for M-code GPS receivers

China publishes technical requirements for key civilian BDS products

Beidou satellite helps with shared electric bikes

EDMO Distributors signs distribution agreement with AvMap Satellite Navigation

SOLAR SCIENCE
Biomass forest sensing satellite shaping up

Brussels warns Warsaw over ancient forest

Chief Raoni on 'final mission' to protect Amazon lands

Covid an excuse to strip tropical forests: indigenous groups

SOLAR SCIENCE
Recycling carbon emissions to useful chemicals and reducing global warming

Termite gut microbes could aid biofuel production

New synthetic route for biofuel production

Norwegian fertiliser maker Yara steps into green energy

SOLAR SCIENCE
Air Force awards UToledo $12.5 million to develop space-based solar energy sheets

Bristol-led research will disrupt solar and expedite efforts toward Net-Zero target

Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology

New research helps solar technology become more affordable

SOLAR SCIENCE
BP enters UK offshore wind sector

Denmark moves forward on North Sea 'energy island'

$43 bn deal for 'world's biggest' offshore wind farm in South Korea

Magnora enters partnership to establish floating wind company

SOLAR SCIENCE
Russian scientists significantly improved coal-burning efficiency

Britain to reconsider controversial coal mine project

Methane emissions from coal mines are higher than previously thought

UK govt gives nod to new coal mine, enraging climate groups

SOLAR SCIENCE
Hong Kong media tycoon Lai arrested over speedboat fugitives: reports

No baby boom in China as births fall by nearly a third in 2020

Myanmar coup and unrest 'not what China wants to see': ambassador

Concern over proposed Hong Kong law that could bar anyone from leaving









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.