. Energy News .




NANO TECH
Southampton scientist develops strongest, lightest glass nanofibres in the world
by Staff Writers
Southampton, UK (SPX) Jan 14, 2013


Gilberto Brambilla, University of Southampton, is shown mounting a fiber on the nanowire fabrication rig. Credit: University of Southampton.

The University of Southampton's Optoelectronics Research Centre (ORC) is pioneering research into developing the strongest silica nanofibres in the world. Globally the quest has been on to find ultrahigh strength composites, leading ORC scientists to investigate light, ultrahigh strength nanowires that are not compromised by defects.

Historically, carbon nanotubes were the strongest material available, but high strengths could only be measured in very short samples just a few microns long, providing little practical value.

Now research by ORC Principal Research Fellow Dr Gilberto Brambilla and ORC Director Professor Sir David Payne has resulted in the creation of the strongest, lightest weight silica nanofibres - 'nanowires' that are 15 times stronger than steel and can be manufactured in lengths potentially of 1000's of kilometres.

Their findings are already generating extensive interest from many companies around the world and could be set to transform the aviation, marine and safety industries. Tests are currently being carried out globally into the potential future applications for the nanowires.

"With synthetic fibres it is important to have high strength, achieved by production of fibre with extremely low defect rates, and low weight," says Dr Brambilla.

"Usually if you increase the strength of a fibre you have to increase its diameter and thus its weight, but our research has shown that as you decrease the size of silica nanofibres their strength increases, yet they still remain very lightweight. We are the only people who currently have optimised the strength of these fibres.

"Our discovery could change the future of composites and high strength materials across the world and have a huge impact on the marine, aviation and security industries. We want to investigate their potential use in composites and we envisage that this material could be used extensively in the manufacture of products such as aircraft, speedboats and helicopters," he adds.

Professor Payne explains: "Weight for weight, silica nanowires are 15 times stronger than high strength steel and 10 times stronger than conventional GRP (Glass Reinforced Plastic). We can decrease the amount of material used thereby reducing the weight of the object.

"Silica and oxygen, required to produce nanowires, are the two most common elements on the earth's crust, making it sustainable and cheap to exploit. Furthermore, we can produce silica nanofibres by the tonne, just as we currently do for the optical fibres that power the internet."

The research findings came about following five years of investigations by Dr Brambilla and Professor Payne using Gilberto's Pounds 500,000 Fellowship funding from the Royal Society.

Dr Brambilla shared his findings with fellow researchers at a special seminar he organised recently at the Kavli Royal Society International Centre, at Chicheley Hall, in Buckinghamshire.

"It was particularly challenging dealing with fibres that were so small. They are nearly 1,000 times smaller than a human hair and I was handling them with my bare hands," says Dr Brambilla.

"It took me some time to get used to it, but using the state-of-the-art facilities at the ORC I was able to discover that silica nanofibres become stronger the smaller they get. In fact when they become very, very small they behave in a completely different way. They stop being fragile and don't break like glass but instead become ductile and break like plastic. This means they can be strained a lot.

"Up until now most of our research has been into the science of nanowires but in the future we are particularly interested in investigating the technology and applications of these fibres," adds Dr Brambilla.

To find out more about the ORC's work on silica nanowires click here.

.


Related Links
University of Southampton
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
New nanotech fiber: Robust handling, shocking performance
Houston TX (SPX) Jan 14, 2013
Rice University's latest nanotechnology breakthrough was more than 10 years in the making, but it still came with a shock. Scientists from Rice, the Dutch firm Teijin Aramid, the U.S. Air Force and Israel's Technion Institute this week unveiled a new carbon nanotube (CNT) fiber that looks and acts like textile thread and conducts electricity and heat like a metal wire. In this week's issue ... read more


NANO TECH
China no longer reliant on satellite image imports

TerraSAR-X image of the month - the coastal cliffs of Christmas Island

Joint Polar Satellite System Common Ground System now serving newest mission

Lockheed Martin Delivered Core Structure For First GOES-R Satellite

NANO TECH
New location system could compete with GPS

Beidou's unique services attractive to Chinese companies

China eyes greater market share for its GPS rival

Researchers told to ward off navigation system interference

NANO TECH
Mangrove loss threatens Bengal tiger

Greeks ravage forests to heat homes

Philippines anger at logging ban murder

World's smelliest and largest flower blooms in Brazil

NANO TECH
California Ethanol Producer Pacific Ethanol Stockton Partners with Edeniq to Expand Production

Tree seeds offer potential for sustainable biofuels

Engineered algae seen as fuel source

Lithuanians recycle Christmas trees into biofuel

NANO TECH
Cedarville University Announces Large Solar Power Installation

True Green Capital Management Brings 12.3MW of Solar Energy to Joint Base McGuire-Dix-Lakehurst

A Sunny Future for Mexico

Arista Power Announces US Government Agency Order For a Mobile Renewable Power Station

NANO TECH
Algonquin Power Buys 109 MW Shady Oaks Wind Power Facility

British group pans wind farm compensation

GE and International Consortium Buys 32 Wind Farms in France

Tax credit extension a reprieve for wind

NANO TECH
China mine blast kills 17: state media

China mine blast toll rises to 23

China mine blast kills 18: state media

US shale gas drives up coal exports

NANO TECH
One-child policy makes Chinese risk-averse: study

Hong Kong tycoons' wealth surges on property: Forbes

Censored China paper to publish 'as normal'

China bloggers back censorship protest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement