Energy News  
CHIP TECH
Strain-free epitaxy of germanium film on mica
by Staff Writers
Washington DC (SPX) Nov 27, 2017


This is a flexible semiconductor Ge thin film grown on mica by van der Waals epitaxy. The film experiences no degradation in its electrical properties even after repeated bending.

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility - higher than silicon by threefold - the semiconductor is making a comeback.

Germanium (Ge) is generally grown on expensive single-crystal substrates, adding another challenge to making it sustainably viable for most applications. To address this aspect, researchers at Rensselaer Polytechnic Institute in the United States demonstrate an epitaxy method that incorporates van der Waals' forces to grow Ge on mica. Applications could include advanced integrated circuits and high-efficiency solar cells.

"This is the first time strain-free van der Waals epitaxy of an elemental semiconductor has been demonstrated on mica," said Aaron Littlejohn, RPI researcher and co-author of the paper demonstrating the work, published recently in the Journal of Applied Physics, from AIP Publishing.

Growing crystalline film layers on crystalline substrates (called epitaxy) is ubiquitous in semiconductor fabrication. If the film and substrate materials are the same, then the perfectly matched layers form strong chemical bonds for optimal charge carrier mobility.

Layering different materials effectively, however, is a challenge because the crystal lattices typically don't align. To get around this, researchers employed vdW forces, phenomena that are based on the probabilistic nature of electrons, which are not in a fixed position around a nucleus.

Rather, they can be anywhere, and the probability that they will be unevenly distributed exists almost all the time. When this happens, there is an induced dipole: a slight positive charge on one side and a slight negative charge opposite. This produces weakly attractive interactions between neutral atoms.

The researchers chose mica as the substrate on which to grow the Ge film because of its atomically smooth surface, which is free of dangling bonds (unpaired valence electrons). This ensured that no chemical bonding would take place during the vdW epitaxy process.

Instead, the materials' interface is held together via weak vdW forces. This allows for the growth of a relaxed film despite the dramatically different crystal structures of the two materials which have a 23 percent difference in atomic spacings. In addition to alleviating the constraints of lattice matching, vdW epitaxy allows the Ge film to be mechanically exfoliated from the mica surface and stand alone as a substrateless film.

"Our Ge film could be used as a thin-film nanomembrane, which could be integrated into electronic devices more easily than nanocrystals or nanowires," Littlejohn said. "It could also serve as the substrate for the subsequent deposition of additional materials for flexible transistors and solar cells, or even wearable optoelectronics."

Geranium films about 80 nanometers thick were grown on millimeter-scale muscovite mica substrates .26 mm thick. By varying the substrate temperature during deposition and annealing in the range of 300-500 degrees Celsius, the researchers found that the crystal lattice stabilizes at about 425 degrees Celsius.

"Previous research implies that elemental semiconductors cannot be epitaxially grown on mica using vdW forces at any elevated temperature, but we have now shown otherwise," Littlejohn said. "With the success of our Ge film grown on mica at a practical temperature, we anticipate that other nonlayered elemental or alloyed materials can be grown on mica via vdW epitaxy."

Research Report: "van der Waals epitaxy of Ge films on mica,"

CHIP TECH
Scientists create a prototype neural network based on memristors
Nizhny Novgorod, Russia (SPX) Nov 22, 2017
Lobachevsky University scientists under the supervision of Alexey Mikhailov, Head of the UNN PTRI Laboratory of Thin Film Physics and Technology, are working to develop an adaptive neural interface that combines, on the one hand, a living culture, and on the other, a neural network based on memristors. This project is one if the first attempts to combine living biological culture with a bi ... read more

Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA finds VA metro area is sinking unevenly

Heavy nitrogen molecules reveal planetary-scale tug-of-war

NASA's TSIS-1 keeps an eye on Sun's power over ozone

NASA Links Port-City Sea Levels to Regional Ice Melt

CHIP TECH
DARPA digging for ideas to revolutionize subterranean mapping

China's GPS network Beidou joins global rescue data network

Galileo quartet fuelled and ready to fly

China's BeiDou Navigation Satellite System Expands Into a Global Network

CHIP TECH
Greenpeace slams Indonesia palm oil industry on deforestation

Amazon's recovery from forest losses limited by climate change

Poland says compliant with EU court order against ancient forest logging

Brazil exports murder-tainted illegal logging: Greenpeace

CHIP TECH
Cleaning Okinawan pig farm wastewater with microbial fuel cells

Brazilian ethanol can replace 13 percent of global crude oil consumption

The water world of ancient photosynthetic organisms

Surrey develops new 'supercatalyst' to recycle carbon dioxide and methane

CHIP TECH
Burkina, France launch W.Africa's biggest solar plant

Improving solar cells by watching atoms move in hybrid perovskite crystals

Artificial photosynthesis gets big boost from new catalyst

Glass microparticles enhance solar cells efficiency

CHIP TECH
U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

New York sets high bar for wind energy

CHIP TECH
Battle lines drawn over coal at UN climate talks

Anti-coal drive at UN climate talks stalked by pro-coal White House

Protest at open-pit coal mine near Bonn ahead of UN climate talks

Coal still holds a slight edge as U.S. power source

CHIP TECH
Shanghai schools fly the flag for China's next generation

Chinese general kills himself after facing graft probe

Different strokes: Taiwan's creative campaign for traditional characters

Secrets and wives: Gay Chinese hide behind 'sham marriage'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.