Energy News  
FARM NEWS
Study finds that plant growth responses to high carbon dioxide depend on symbiotic fungi
by Staff Writers
Bloomington IN (SPX) Jul 03, 2016


Ectomycorrhizal fungi (shown as mushrooms connected to the roots of the tree) increase the uptake of nitrogen by the plant. Arbuscular mycorrhizal fungi (show as grass roots on the left) do not provide that advantage to their host. Image courtesy Victor O. Leshyk. For a larger version of this image please go here.

Research by an international team of environmental scientists from the United Kingdom, Belgium and United States, including Indiana University, has found that plants that associate with one type of symbiotic fungi grow bigger in response to high levels of carbon dioxide, or CO2, in the atmosphere, but plants that associate with the other major type of symbiotic fungi do not.

The study, which appears online in the journal Science, calls into question whether the 'greening of the Earth' that results from carbon dioxide stimulation of plant growth - often called the "CO2 fertilization effect" - will persist as fossil fuel emissions continue to rise globally.

"Pumping extra carbon dioxide into a greenhouse is a common tactic to stimulate plant growth, but nature is much more complex than a greenhouse," said Richard Phillips, associate professor in the IU College of Arts and Sciences' Department of Biology, who is a co-author on the study. "So, there is great debate about whether pumping carbon dioxide into the atmosphere through fossil fuel combustion stimulates plant growth in nature, where soil nutrient levels are typically much lower than in a greenhouse."

Fungi that form symbiotic relationships with plants are called mycorrhizal fungi. Over 90 percent of all plant life on Earth associates with mycorrhizal fungi, which provide plants with soil nutrients in exchange for plant carbohydrates.

"While researchers have long known that mycorrhizal fungi play an essential role in the growth and health of plants, their role in helping ecosystems store carbon has never been investigated on such a broad scale - until now," said second-year PhD student Cesar Terrer of Imperial College London, who is first author on the paper.

"Our analysis is the first to demonstrate that only plants that associate with a certain type of fungal partner - one that helps them acquire nitrogen from soil - are likely to grow bigger as carbon dioxide levels rise."

Other authors are on the study are Colin Prentice of Imperial College London; Sara Vicca of the University of Antwerp, Belgium; and Bruce A. Hungate of the Northern Arizona University.

The research team examined 83 experimental studies of plant responses to CO2 levels equivalent to those expected by the year 2050, assuming an increase of about 2 percent each year globally.

They found a marked difference in the ability of certain plants to take advantage of increased CO2 levels. Plants that grew in nitrogen-rich soils were able to grow bigger and sustain high levels of growth throughout the experiment, following expectations. In nitrogen-poor soils, however, only plants that associate with a certain type of symbiotic fungi were able to keep growing larger.

The group of fungi that enabled plants to grow bigger under high CO2 levels is ectomycorrhizal fungi - a type of fungi that helps plants access soil nutrients by decomposing organic matter, such as the remains of dead plants and microbes.

Plants that associate with the other major type of mycorrhizal fungi - arbuscular mycorrhizal fungi - were unable to maintain high levels of growth under elevated CO2. While these fungi also increase plant access to nutrients, they cannot access nutrients locked up in soil organic matter.

"Nearly all plants associate with only a single type of mycorrhizal fungi," said Phillips. "And since the type of fungal associates are known for most plant species, we can begin to predict which ecosystems may respond favorably to high levels of CO2 and which ones will not."

Ectomycorrhizal fungi associate only with woody plants, such as trees and shrubs, and tend to dominate in forests at high latitudes. Arbuscular mycorrhizal fungi associate with all forms of plant life and dominate in nearly all ecosystems, aside from the boreal forest. In temperate forests, about the half the tree species associate with each type of fungi.

About 30 percent of human CO2 emissions are currently absorbed by land-based ecosystems, without which climate change would be happening even faster than it is now.

The results of this study should enable climate scientists make more accurate predictions of the effects of CO2 in the future, Phillips said.

"In some ways, our research represents encouraging news in that many of our forests may continue to slow climate change by soaking up carbon dioxide," he added. "On the other hand, it is sobering in that the CO2 fertilization effect may occur on a relatively small fraction of the Earth's surface. And if climate change also increases the frequency and intensity of disturbances such as droughts and floods, the magnitude of the plant growth response to high carbon dioxide will be diminished."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Indiana University
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FARM NEWS
Conservation key to curbing emissions from palm oil agriculture in Africa
Durham NC (SPX) Jul 03, 2016
As oil palm production expands from Southeast Asia into Central Africa, a new Duke University-led study warns that converting Africa's tropical forests into monoculture palm plantations will cause a significant spike in climate-warming carbon emissions. The authors urge regional governments to enact mandatory policies regulating which forests can be cleared and how much remaining forest must be ... read more


FARM NEWS
Experts call for satellite tech to be used in Africa's anti-poaching efforts

Vision through the clouds

Sentinel-1 satellites combine radar vision

Canada Launches Maritime Monitoring Satellite

FARM NEWS
Raytheon hits next-generation GPS milestone

China promises GPS system that's "reliable, safe and free"

China promotes int'l development of homegrown GPS system

BeiDou GPS system targets global service around 2020

FARM NEWS
NASA Maps California Drought Effects on Sierra Trees

Where do rubber trees get their rubber

Significant humus loss in forests of the Bavarian Alps

Botanical diversity unraveled in a previously understudied forest in Angola

FARM NEWS
Study shows trees with altered lignin are better for biofuels

Solar exposure energizes muddy microbes

Chemists find new way to recycle plastic waste into fuel

Bioenergy integrated in the bio-based economy crucial to meet climate targets

FARM NEWS
Scientists explain unusual and effective features in perovskite

'Flower Power': Photovoltaic cells replicate rose petals

Saved by the sun

Energy from sunlight: Further steps towards artificial photosynthesis

FARM NEWS
More wind power added to French grid

How China can ramp up wind power

Scotland investing more in offshore wind

Gamesa, Siemens join forces to create global wind power leader

FARM NEWS
Sweden backs Vattenfall exit from German coal unit

Federal coal report is propaganda, House Republican says

Coal ash ponds found to leak toxic materials

U.S. coal production lowest since the 1980s

FARM NEWS
Protesters rally in Hong Kong on handover anniversary

Promised work, Myanmar women instead forced to marry in China

Aide to former Chinese president Hu Jintao jailed for life: media

Hong Kong officials to visit Beijing for talks over bookseller









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.