Energy News  
MARSDAILY
SwRI's Martian moons model indicates formation following large impact
by Staff Writers
San Antonio TX (SPX) Apr 19, 2018

illustration only

Southwest Research Institute scientists posit a violent birth of the tiny Martian moons Phobos and Deimos, but on a much smaller scale than the giant impact thought to have resulted in the Earth-Moon system. Their work shows that an impact between proto-Mars and a dwarf-planet-sized object likely produced the two moons, as detailed in a paper published in Science Advances.

The origin of the Red Planet's small moons has been debated for decades. The question is whether the bodies were asteroids captured intact by Mars gravity or whether the tiny satellites formed from an equatorial disk of debris, as is most consistent with their nearly circular and co-planar orbits. The production of a disk by an impact with Mars seemed promising, but prior models of this process were limited by low numerical resolution and overly simplified modeling techniques.

"Ours is the first self-consistent model to identify the type of impact needed to lead to the formation of Mars' two small moons," said lead author Dr. Robin Canup, an associate vice president in the SwRI Space Science and Engineering Division. Canup is one of the leading scientists using large-scale hydrodynamical simulations to model planet-scale collisions, including the prevailing Earth-Moon formation model.

"A key result of the new work is the size of the impactor; we find that a large impactor - similar in size to the largest asteroids Vesta and Ceres - is needed, rather than a giant impactor," Canup said.

"The model also predicts that the two moons are derived primarily from material originating in Mars, so their bulk compositions should be similar to that of Mars for most elements. However, heating of the ejecta and the low escape velocity from Mars suggests that water vapor would have been lost, implying that the moons will be dry if they formed by impact."

The new Mars model invokes a much smaller impactor than considered previously. Our Moon may have formed when a Mars-sized object crashed into the nascent Earth 4.5 billion years ago, and the resulting debris coalesced into the Earth-Moon system. The Earth's diameter is about 8,000 miles, while Mars' diameter is just over 4,200 miles. The Moon is just over 2,100 miles in diameter, about one-fourth the size of Earth.

While they formed in the same timeframe, Deimos and Phobos are very small, with diameters of only 7.5 miles and 14 miles respectively, and orbit very close to Mars. The proposed Phobos-Deimos forming impactor would be between the size of the asteroid Vesta, which has a diameter of 326 miles, and the dwarf planet Ceres, which is 587 miles wide.

"We used state-of-the-art models to show that a Vesta-to-Ceres-sized impactor can produce a disk consistent with the formation of Mars' small moons," said the paper's second author, Dr. Julien Salmon, an SwRI research scientist.

"The outer portions of the disk accumulate into Phobos and Deimos, while the inner portions of the disk accumulate into larger moons that eventually spiral inward and are assimilated into Mars. Larger impacts advocated in prior works produce massive disks and more massive inner moons that prevent the survival of tiny moons like Phobos and Deimos."

These findings are important for the Japan Aerospace Exploration Agency (JAXA) Mars Moons eXploration (MMX) mission, which is planned to launch in 2024 and will include a NASA-provided instrument. The MMX spacecraft will visit the two Martian moons, land on the surface of Phobos and collect a surface sample to be returned to Earth in 2029.

"A primary objective of the MMX mission is to determine the origin of Mars' moons, and having a model that predicts what the moons compositions would be if they formed by impact provides a key constraint for achieving that goal," Canup said.


Related Links
Planetary Science at SWRI
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
MIPT physicists design a model of Martian winter
Moscow, Russia (SPX) Apr 10, 2018
A team of researchers from MIPT and their German and Japanese colleagues have designed a numerical model of the annual water cycle in the Martian atmosphere. Previously, the scientists focused their research on relatively large airborne dust particles that serve as water condensation nuclei on Mars. In this study, the MIPT team expanded the analysis to include smaller particles that are more elusive. As a result, the calculations turned out to be more accurate and consistent with the data obtained ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
NASA's world tour of the atmosphere reveals surprises along the way

NASA mapping hurricane damage across Everglades

Do-It-Yourself Science: Because We Are All Explorers

Storm hunter in position

MARSDAILY
Chinese willing to support Beidou navigation system

PSLV-C41 Successfully Launches IRNSS-1I Navigation Satellite

Lockheed Martin Submits Proposal for U.S. Air Force's GPS 3F Program

India Resets Navigation Satellite Developed to Replace GPS

MARSDAILY
Poland illegally cut down ancient forest, EU court rules

Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

Drought-induced changes in forest composition amplify effects of climate change

MARSDAILY
Research shows how genetics can contribute for advances in 2G ethanol production

Algae-forestry, bioenergy mix could help make CO2 vanish from thin air

Removing the brakes on plant oil production

NUS engineers pioneer greener and cheaper technique for biofuel production

MARSDAILY
A whispering gallery for light boosts solar cells

Double perovskites in environmentally friendly solar cells

Perovskite technology is scalable, but questions remain about the best methods

Light 'relaxes' crystal to boost solar cell efficiency

MARSDAILY
Alberta proposes more renewable energy incentives

Transformer station for giant German wind farm positioned

Scotland's largest offshore wind farm close to operational

Construction complete ahead of schedule at Sommette wind farm, France

MARSDAILY
BHP confirms exit from world coal body over climate stance

Michigan utility company to go zero coal

Australia won't fund mega Adani mine rail link

MARSDAILY
China's Weibo backtracks on gay content ban

Former China Politburo member pleads guilty to bribery

Former China Politburo member pleads guilty to bribery

Top China news app self-criticises after government crackdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.