Energy News  
Synthetic Biology Yields Clues To Evolution And The Origin Of Life

The power of combinatorial chemistry lies in the vast numbers of structurally distinct molecules that can be synthesized and tested at the same time. Similarly, conditions on the early Earth allowed not only the synthesis of a wide variety of complex organic molecules, but also the formation of membrane-bound compartments that would have encapsulated different combinations of molecules.
by Staff Writers
Chicago IL (SPX) Feb 24, 2009
Researchers in the field of synthetic biology are still a long way from being able to assemble living cells from scratch in the laboratory. But according to biochemist David Deamer of the University of California, Santa Cruz, their efforts are yielding clues to the mystery of how life began on Earth.

Deamer has been investigating the origin of life for more than 20 years, focusing on the molecular self-assembly processes that led to the first "protocells" nearly 4 billion years ago. At the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago, he discussed evolution, biochemistry, and the origin of cellular life.

His presentation is part of a symposium on evolution organized by Eugenie Scott, director of the National Center for Science Education in Oakland, Calif.

According to Deamer, life began with complex systems of molecules that came together through the self-assembly of nonliving components. A useful metaphor for understanding how this came about, he said, can be found in combinatorial chemistry, an approach in which thousands of experiments are carried out in parallel by robotic devices.

"I look at the origin of life as the result of combinatorial chemistry on a global scale," said Deamer, a research professor of chemistry and biochemistry at UCSC who is also affiliated with the Department of Biomolecular Engineering in UCSC's Jack Baskin School of Engineering.

The power of combinatorial chemistry lies in the vast numbers of structurally distinct molecules that can be synthesized and tested at the same time. Similarly, conditions on the early Earth allowed not only the synthesis of a wide variety of complex organic molecules, but also the formation of membrane-bound compartments that would have encapsulated different combinations of molecules.

"We have made protocells in the lab--artificial compartments containing complex systems of molecules," Deamer said.

"The creationists charge that it's too unlikely for the right combination to have come together on its own, but combinatorial chemistry gives us a better way to think about the probability of life emerging from this process."

Life began when one or a few protocells happened to have a mix of components that could capture energy and nutrients from the environment and use them to grow and reproduce.

Efforts to replicate this process in the laboratory are still in their infancy, but Deamer said he is optimistic that scientists will eventually be able to assemble a living cell from a parts list and thereby achieve a better understanding of how life began.

The first forms of life did not evolve in the usual sense, he said, but simply grew. "Evolution began when large populations of cells had variations that led to different metabolic efficiencies," Deamer said. "If the populations were in a confined environment, at some point they would begin to compete for limited resources."

The first evolutionary selection processes would have favored those organisms that were most efficient in capturing energy and nutrients from the local environment, he said.

In his talk at the AAAS meeting, Deamer will outline the conditions that scientists think were necessary for life to emerge on the early Earth. He is currently working on a book about the origin of life to be published by UC Press.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of California - Santa Cruz
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Poachers put Balkan lynx on brink of extinction
Galicica Mountain, Macedonia (AFP) Feb 22, 2009
The camera sits hidden in a field ready to track every move of the Balkan lynx, a wild cat both revered as an icon and reviled as a pest that has teetered on extinction for nearly a century.







  • BP to pay 179 million dollars to settle Texas pollution case
  • Analysis: Khodorkovsky in court again
  • Blast damages NATO oil tanker in Pakistan: official
  • Analysis: Iran wants Turkmen gas

  • Iraq invites France back to build nuclear plant
  • US nuclear plants must prepare for plane attacks
  • Latvia, Estonia push for Baltic nuclear plant
  • French firm studying Kuwait's nuclear programme: emir

  • Scientist Models The Mysterious Travels Of Greenhouse Gas
  • Global Warming May Delay Recovery Of Stratospheric Ozone
  • Science In The Stratosphere
  • Americans Owe Five Months Of Their Lives To Cleaner Air

  • Chad fights charcoal in battle against creeping desert
  • Activists slam Finnish paper maker for logging 'virgin forest'
  • African forests gobble up more CO2: study
  • Study: Trees absorb one-fifth of CO2 gas

  • New study points to GM contamination of Mexican corn
  • Microbes Were Key In Developing Modern Nitrogen Cycle
  • Biologist Discusses Sacred Nature Of Sustainability
  • Mass Media Often Failing In Its Coverage Of Global Warming

  • Electric car charging stations power-up in San Francisco
  • China's Chery Auto unveils electric car: company
  • Chinese auto maker plans to take on giants with electric cars
  • Nearly 1,500 more cars in Beijing daily: state media

  • Major airlines call for climate deal to include aviation
  • Swiss aircraft firm to cut jobs in Ireland
  • Bank of China extends massive credit to state aircraft maker
  • Shanghai Airlines seeks capital injection

  • Nuclear Power In Space - Part 2
  • Nuclear Power In Space
  • Outside View: Nuclear future in space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement