Energy News  
SOLAR DAILY
Synthetic tree enhances solar steam generation for harvesting drinking water
by Staff Writers
Washington DC (SPX) Jun 23, 2021

Transpiration-powered synthetic tree.

About 2.2 billion people globally lack reliable access to clean drinking water, according to the United Nations, and the growing impacts of climate change are likely to worsen this reality.

Solar steam generation (SSG) has emerged as a promising renewable energy technology for water harvesting, desalination, and purification that could benefit people who need it most in remote communities, disaster-relief areas, and developing nations. In Applied Physics Letters, by AIP Publishing, Virginia Tech researchers developed a synthetic tree to enhance SSG.

SSG turns solar energy into heat. Water from a storage tank continuously wicks up small, floating porous columns. Once water reaches the layer of photothermal material, it evaporates, and the steam is condensed into drinking water.

One major challenge in scaling up SSG technology is the limit in the capillary force beyond a certain column height, when the water cannot wick fast enough to keep up with the evaporation process. The capillary force, based on the surface tension that causes water to "climb" a porous paper towel, drives the water toward the evaporator.

Inspired by mangrove trees thriving along coastlines, the researchers bypassed this hurdle by creating a synthetic tree to replace the capillary action with transpiration, the process of water movement through a plant and its evaporation from leaves, stems, and flowers. Transpiration can pump water up insulating tubes of any desired height.

In real trees, transpiration begins at the roots, which suck up water through hollow vessels made from xylem tissue. As the water warms, it releases as vapor through pores on the underside of leaves.

The synthetic tree consists of a 19-tube array, covered by a nanoporous ceramic disk, which serves as the leaf. Each plastic tube, imitating the xylem conduits, is 6 centimeters high, just under 2.5 inches, with an inner diameter of 3.175 millimeters, about a tenth of an inch.

The setup enables the evaporating interface to thermally separate from the bulk water in the tank, so the evaporator does not dry out. Water evaporating from the disk is replenished by suction, which continuously pumps more water from a bottom tank up the tube array.

"We expect our tree-based solar steam generator will be of interest for applications in underground water extraction and purification," author Jonathan Boreyko said. "The ultimate goal is to achieve a suction pressure strong enough to pull ocean water through a salt-excluding filter without requiring a mechanical pump, analogous to how mangrove trees are able to grow in ocean water."

Future research could focus on fabricating taller trees, adding more leaves to increase the area over which evaporation occurs, and incorporating desalination membranes at the tube inlets to prevent salt buildup.

Research Report: "Synthetic trees for enhanced solar evaporation and water harvesting"


Related Links
American Institute Of Physics
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Computers help researchers find materials to turn solar power into hydrogen
University Park PA (SPX) Jun 23, 2021
Using solar energy to inexpensively harvest hydrogen from water could help replace carbon-based fuel sources and shrink the world's carbon footprint. However, finding materials that could boost hydrogen production so that it could compete economically with carbon-based fuels has been, as yet, an insurmountable challenge. In a study, a Penn State-led team of researchers reports it has taken a step toward overcoming the challenge of inexpensive hydrogen production by using supercomputers to find mat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
NASA helps map impact of COVID-19 lockdowns on harmful air pollution

Artificial intelligence breakthrough gives longer advance warning of ozone issues

European system speeds data flow with 50 000 links

Rising greenhouse gases threaten Arctic ozone layer

SOLAR DAILY
NASA extends Cyclone Global Navigation Satellite System mission

Lockheed Martin-Built Next Generation GPS III Satellite Propels Itself to Orbit

GMV at the core of the Galileo High Accuracy Service

Galileo satellites' last step before launch

SOLAR DAILY
Commercial forests could produce long-term climate benefit

Russian forests are crucial to global climate mitigation

Brazil environment minister resigns amid investigation

Passive rewilding can rapidly expand UK woodland at no cost

SOLAR DAILY
Recycling robot could help solve soft plastic waste crisis

Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels

Transforming CO2 and sugars into biofuel

Sweet promise for the environment

SOLAR DAILY
Synthetic tree enhances solar steam generation for harvesting drinking water

Togo launches West Africa's largest solar plant

Computers help researchers find materials to turn solar power into hydrogen

Outstanding organic solar cells' performance achieved by using new technology

SOLAR DAILY
US to open California coast to wind power

US approves its biggest offshore wind farm yet

Vertical turbines could be the future for wind farms

Researchers working to further develop monopile production for offshore wind farms

SOLAR DAILY
Kids' bid to block Australian coal mine scores 'landmark' victory

EU court orders Polish coal mine to halt production

G7 to end state financing for coal power plants by end-2021

HSBC under fire over health impact of coal investments

SOLAR DAILY
18 killed, 16 injured in fire at China martial arts school

Curtain falls on Hong Kong tabloid that dared to challenge China

Why people join the Chinese Communist Party

'Not quite a religion': China's Communist Party attracts new devotees









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.