Energy News  
ENERGY TECH
Syracuse chemists combine biology, nanotechnology to create alternate energy source
by Staff Writers
Syracuse NY (SPX) Mar 08, 2016


This image shows from left Liliana Karam, Mathew Maye, and Tennyson Doane. Image courtesy Syracuse University News. For a larger version of this image please go here.

Chemists in Syracuse University's College of Arts and Sciences have made a transformational advance in an alternate lighting source--one that doesn't require a battery or a plug. Associate Professor Mathew Maye and a team of researchers from Syracuse, along with collaborators from Connecticut College, have recently demonstrated high-efficient energy transfer between semiconductor quantum rods and luciferase enzymes.

Quantum rods and luciferase enzymes are nanomaterials and biomaterials, respectively. When combined correctly, these materials produce bioluminescence--except, instead of coming from a biomaterial, such as a firefly enzyme, the light eminates from a nanomaterial, and is green, orange, red, or near-infrared in color.

The findings are the subject of a recent article in ACS Nano (American Chemical Society, 2016).

"Think of our system as a design project," Maye says. "Our goal has been to build a nano-biosystem that's versatile enough to teach us a lot, while allowing us to overcome significant challenges in the field and have practical applications. The design involves materials from our chemistry and biology labs, as well as various nanoscience and self-assembly tools. It's a true team effort with multiple collaborations."

Maye illustrates his point by referencing quantum rods, each of which is four nanometers wide and 50 nanometers long. (A nanometer is 1 billionth of a meter.) "The rods were chemically synthesized with amazing precision," he says.

"To get the best information, we realized that we needed at least two different types of rods, each with three synthetically tuned variations, and up to 10 different assembly conditions."

Having a wide range of variables has enabled Maye and his team to learn more about the science of nano-biology energy transfer.

Prior to becoming a postdoc at the University of Notre Dame, Rabeka Alam G'13 led the project at Syracuse as a Ph.D. student. She says this work illuminates a special kind of interaction known as bioluminescence resonance energy transfer (BRET).

"In nanoscience, a quantum dot or rod is typically an energy donor," she says. "In our case, the energy came from bioluminescent luciferase."

With BRET, the enzyme is attached to the surface of the rod. Luciferin is added, and acts as a kind of fuel. When the enzyme and fuel interact, they release an energy that is transferred to the rod, causing it to glow.

"The trick to increasing the efficiency [of BRET] is finding the right donor-acceptor combination, which requires different rods and enzymes," says Liliana Karam, a Syracuse Ph.D. student who currently heads up the project. "Thanks to our colleagues at Connecticut College, we have genetically manipulated enzymes of multiple colors that are attached to the rods, which, in turn, are prepared in our lab at Syracuse."

Maye says the quantum rods are composed of semi-conductive elements--specifically, an outer shell of cadmium sulfide and an inner core of cadmium selenide. By manipulating the size and shape of the core, the length of the rod, and the way the enzymes are attached and packed onto the surface of the rod, researchers are able to alter the color and intensity of the light that is emitted, thus demonstrating the overall efficiency of the process.

Postodc Tennyson Doane, a senior member of the Maye Research Group, says one of the breakthroughs of the project involves a special type of rod known as a "rod-in-rod." The group has been hypothesizing why this particular rod results in high-efficiency gains.

"When you have a rod-shaped core, the resulting fluorescence is polarized, meaning circular light comes in, and linearly polarized light comes out," says Doane, adding that the shape of the material makes BRET more efficient.

"We believe that, when aligned correctly with the luciferase-excited state, the rod experiences efficiency gains that otherwise are not witnessed in a self-assembled nanosystem. Controlling the enzyme location and bioluminescence polarization may, one day, lead to novel 'light switches," in which only certain enzymes around the quantum rod are able to interact via BRET."

Maye calls this "using biology for non-biological applications."

"Our nanorods are made of the same materials used in computer chips, solar panels, and LED [light-emitting diode] lights. At the moment, our system works best in the red to near-infrared range, which has longer wavelengths than visible light, and is invisible to the eye," he says, alluding to night-vision goggles, medical imaging, and rapid microbial detection.

"Our work is patent-pending at Syracuse. Perhaps, we'll someday have firefly-covered nanorods that can be inserted into LED lights and don't require a plug."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Syracuse University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Creation of Jupiter interior, a step towards room temp superconductivity
Osaka, Japan (SPX) Dec 21, 2015
Hydrogen is the most abundant element in the universe, and a major component of stars such as the Sun, as well as gas-giant planets such as Jupiter and Saturn. In recent years, hydrogen's behavior at high temperature and high pressure has been in the realm of interest not only for planetary science, but also for fields such as materials science for the purpose of achieving a hydrogen energy soci ... read more


ENERGY TECH
The ancient rotation of the Iberian Peninsula left a magnetic trace

Sentinel-3A rides the waves

Nonstop LEOP full stop

NASA Data Used to Track Groundwater in Pakistan

ENERGY TECH
Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

ESA helping to keep transport systems on track

Europe speeds up launches for sat-nav system

ENERGY TECH
Thousands attend funeral of slain Honduran environmentalist

Honduran environmentalist murdered: family

Green groups urge DR Congo to keep forest moratorium

New insights into the seasonality of Amazon's evergreen forests

ENERGY TECH
Biofuels from algae: A budding technology yet to become viable

Researchers' new advance in quest for second generation biofuels

Improving biorefineries with bubbles

Study: Bubbles boost efficiency of biorefinery systems

ENERGY TECH
Canada makes low-carbon commitments

Tax credit extensions impact renewable energy deployments

Researchers make key improvement in solar cell technology

Solar cells as light as a soap bubble

ENERGY TECH
Adwen Chooses Sentient Science For Computational Gearbox Testing

EU boasts of strides in renewable energy

Offshore U.K. to host world's largest wind farm

Germany aims to build wind energy reputation

ENERGY TECH
U.S. coal exports on the decline; As JPMorgan sounds warning

High-carbon coal products could derail China's clean energy efforts

China coal consumption drops again: govt

Central Appalachia flatter as result of mountaintop mining

ENERGY TECH
China Communist party punished nearly 300,000 for graft in 2015

China's population to grow 45 million by 2020: plan

Another 'missing' bookseller back in Hong Kong: police

Top China lawyer calls for end to televised confessions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.