Energy News  
STELLAR CHEMISTRY
Temperatures of 800 billion degrees in the cosmic kitchen
by Staff Writers
Munich, Germany (SPX) Aug 23, 2019

HADES detector with digital camera that records light patterns originating from virtual photons. The detector is suitable for investigating the properties of atomic nuclei under high pressure, just as it is produced in a supernova. This allows conclusions to be drawn as to how mass is formed in the first place.

When two neutron stars collide, the matter at their core enters extreme states. An international research team has now studied the properties of matter compressed in such collisions. The HADES long-term experiment, involving more than 110 scientists, has been investigating forms of cosmic matter since 1994.

With the investigation of electromagnetic radiation arising when stars collide, the team has now focused attention on the hot, dense interaction zone between two merging neutron stars.

Collisions between stars cannot be directly observed - not least of all because of their extreme rarity. According to estimates, none has ever happened in our galaxy, the Milky Way. The densities and temperatures in merging processes of neutron stars are similar to those occurring in heavy ion collisions, however. This enabled the HADES team to simulate the conditions in merging stars at the microscopic level in the heavy ion accelerator at the Helmholtzzentrum fur Schwerionenforschung (GSI) in Darmstadt.

As in a neutron star collision, when two heavy ions are slammed together at close to the speed of light, electromagnetic radiation is produced. It takes the form of virtual photons that turn back into real particles after a very short time.

However, the virtual photons occur very rarely in experiments using heavy ions. "We had to record and analyze about 3 billion collisions to finally reconstruct 20,000 measurable virtual photons," says Dr. Jurgen Friese, the former spokesman of the HADES collaboration and researcher at Laura Fabbietti's Professorship on Dense and Strange Hadronic Matter at TUM.

Photon camera shows collision zone
To detect the rare and transient virtual photons, researchers at TUM developed a special 1.5 square meter digital camera. This instrument records the Cherenkov effect: the name given to certain light patterns generated by decay products of the virtual photons.

"Unfortunately the light emitted by the virtual photons is extremely weak. So the trick in our experiment was to find the light patterns," says Friese. "They could never be seen with the naked eye. We therefore developed a pattern recognition technique in which a 30,000 pixel photo is rastered in a few microseconds using electronic masks. That method is complemented with neural networks and artificial intelligence."

Observing the material properties in the laboratory
The reconstruction of thermal radiation from compressed matter is a milestone in the understanding of cosmic forms of matter. It enabled the scientists to place the temperature of the new system resulting from the merger of stars at 800 billion degrees celsius. As a result, the HADES team was able to show that the merging processes under consideration are in fact the cosmic kitchens for the fusion of heavy nucleii.

Research paper


Related Links
Technical University of Munich (TUM)
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Scientists discover a new type of pulsating star
Santa Barbara CA (SPX) Aug 05, 2019
Scientists can tell a lot about a star by the light it gives off. The color, for example, reveals its surface temperature and the elements in and around it. Brightness correlates with a star's mass, and for many stars, brightness fluctuates, a bit like a flickering candle. A team of scientists led by UC Santa Barbara researcher Thomas Kupfer recently discovered a new class of these pulsators that vary in brightness every five minutes. Their results appeared in The Astrophysical Journal Letters. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Philippine Airborne Campaign Targets Weather, Climate Science

Raytheon-built space sensor will fly aboard NASA satellite to measure coastal and ocean ecosystems

NASA's ECOSTRESS Detects Amazon Fires from Space

New Landsat Infrared Instrument Ships from NASA

STELLAR CHEMISTRY
Second Lockheed Martin-Built Next Generation GPS III Satellite Responding to Commands, Under Self-Propulsion

UK seeking to enlist 'Five Eyes' for rival Galileo GPS system

Tiny GPS backpacks uncover the secret life of desert bats

Evolution of space, 2SOPS prepares for GPS Block III

STELLAR CHEMISTRY
G7 pledges millions to fight Amazon fires

Heat, wildfires could alter Alaska's forest composition

DR Congo president warns over risk to forest reserves

Amazon rainforest absorbing less carbon than expected

STELLAR CHEMISTRY
Researchers use AI to plot green route to nylon

Dangerous wild grass will be used in batteries

Biomaterials smarten up with CRISPR

Protein factors increasing yield of a biofuel precursor in microscopic algae

STELLAR CHEMISTRY
Tiny tweaks for big wins in solar cells

Materials that can revolutionize how light is harnessed for solar energy

How to have an all-renewable electric grid

SolAero to supply solar modules to Maxar for Lunar Gateway Power and Propulsion Element

STELLAR CHEMISTRY
Colombia's biggest wind power portfolio purchased by AES Colombia

Growth of wind energy points to future challenges, promise

Scout obtains construction permit for 200MW Sweetland Wind Farm

E.ON announces 440 MW southern Texas windfarm

STELLAR CHEMISTRY
French journalists arrested at Australia anti-coal protest

Coal-dependent Poland to compensate industry for carbon costs

Indian tycoon Adani rejects Australian mine criticism

Three miners dead after tremor in Poland

STELLAR CHEMISTRY
Hong Kong police round up activists ahead of rally

Love in a time of tear gas: politics and romance on Hong Kong's barricades

Cathay warns staff face sack if they join Hong Kong strike

Foreign firms unprepared for China's 'life-or-death' rating system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.