Energy News  
STELLAR CHEMISTRY
The Modes of Webb's NIRISS
by Thaddeus Cesari for NASA Blogs
Baltimore MD (SPX) Jun 06, 2022

With SOSS mode, the NIRISS instrument will be able to study the atmospheres of exoplanets as they pass in front of their star using a technique called transit spectroscopy. The spectrum observed by NIRISS will act like an alien barcode, indicating the presence of certain atoms and molecules. The above illustration shows how absorption features due to sodium (Na) and potassium (K) can be seen in the visible light spectrum; Webb's infrared light observations will be sensitive to other features such as water vapor, carbon dioxide, and methane. (Credit: European Southern Observatory)

The Webb team continues to commission the 17 science instrument modes. This week we asked Nathalie Ouellette of the Universite de Montreal to give more detail about the modes of the Near-Infrared Imager and Slitless Spectrograph (NIRISS), Canada's scientific instrument on Webb.

"NIRISS will be able to capture both images and spectra from different types of celestial objects in near-infrared light, at wavelengths up to 5.0 microns. The NIRISS team has developed four instrument modes to collect different kinds of data that are well-suited for different targets and scientific objectives.

Single Object Slitless Spectroscopy (SOSS)

"The SOSS mode on NIRISS allows the Webb telescope to obtain high-precision spectra from one bright object at a time. This mode is optimized to carry out time-series observations, which are ideal for studying a phenomenon that changes over the length of a typically hours-long observation, such as an exoplanet transiting in front of its host star.

"Using a technique called transit spectroscopy, the NIRISS instrument can collect a spectrum of an exoplanet's atmosphere, which contains different markers that allow astronomers to determine its composition, temperature, potential habitability signatures, and other important characteristics.

Wide Field Slitless Spectroscopy (WFSS)

"The WFSS mode on NIRISS allows Webb to obtain spectra but for thousands of objects, such as galaxies, at the same time over the detector's entire field of view (4.84 arcmin2). The spectra of thousands of galaxies will enable measurement of their distances, ages, and other physical parameters to trace how galaxies evolve over the lifetime of the universe. In the simulated example shown in the figure, the galaxy cluster acts like a cosmic lens that magnifies and stretches the images of faint background galaxies, so they can be studied in even greater detail.

"Since NIRISS can collect so many spectra at a time using the WFSS mode, individual spectra can overlap if their sources are too close. There are thus two orthogonal grisms, GR150C and GR150R, that can produce spectra horizontally and vertically, respectively, which helps to disentangle blended spectra from different galaxies.

Aperture Masking Interferometry (AMI)

"The AMI mode on NIRISS allows Webb to study objects that are very close together on the sky, using a special technique called interferometry. A mask inside the instrument allows light from only certain parts of the primary mirror to pass through. Astronomers can increase the resolution of the telescope by a factor of nearly 2.5 by looking at the patterns created as the carefully chosen beams of light interfere with each other.

This allows two objects that are close to each other that would otherwise look like a single blurred point, like an exoplanet orbiting a star, to appear as two distinct points of light in a Webb image.

The mask blocks out a large portion of the light, so the observed objects must be bright in order to detect them. The AMI mode will be used to observe exoplanets, brown dwarfs, and protoplanetary disks. This is the first time that such a mask is being used in space.

NIRISS Imaging
"Because of the importance of near-infrared imaging to Webb's scientific success, NIRISS includes an imaging capability that functions as a backup to NIRCam imaging. This capability can be used in parallel, with NIRCam and NIRISS simultaneously taking images of two closely separated fields of view, imaging a larger area of an extended source."

- Nathalie Ouellette, Webb outreach scientist, Universite de Montreal

- Jonathan Gardner, Webb deputy senior project scientist, NASA's Goddard Space Flight Center


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
First images from Webb Space Telescope coming soon
Baltimore MD (SPX) Jun 02, 2022
NASA's James Webb Space Telescope, a partnership with ESA (European Space Agency) and the Canadian Space Agency (CSA), will release its first full-color images and spectroscopic data on July 12, 2022. As the largest and most complex observatory ever launched into space, Webb has been going through a six-month period of preparation before it can begin science work, calibrating its instruments to its space environment and aligning its mirrors. This careful process, not to mention years of new technology d ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Updating our understanding of Earth's architecture

Lynred launches two multispectral linear array infrared detectors for EO missions

The consequences of climate change in the Alps are visible from space

China's newly-launched meteorological satellites put into trial operation

STELLAR CHEMISTRY
Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

Xona passes critical testing milestone as private GNSS readies for launch

STELLAR CHEMISTRY
Brazil leader complains to Biden about pressure over Amazon

Fears mount for UK journalist, Indigenous expert missing in Amazon

Deforestation surges in Brazil Atlantic Forest: report

Appeals at Davos to stop Amazon deforestation

STELLAR CHEMISTRY
Bacteria could transform paper industry waste into useful products

Toward customizable timber, grown in a lab

Ultrathin fuel cell uses the body's own sugar to generate electricity

Mystery solved about active phase in catalytic CO2 reduction to methanol

STELLAR CHEMISTRY
Ultralight flexible perovskite solar cells

Biden throws US solar industry a lifeline with tariff relief, but can incentives bring manufacturing back?

Solar-biomass hybrid system satisfies home heating requirements in winter

New polymer property could boost accessible solar power

STELLAR CHEMISTRY
As the grid adds wind power, researchers have to reengineer recovery from blackouts

1500 sensors for the rotor blades of the future

Long-duration energy storage beats the challenge of week-long wind-power lulls

400 GW wind, solar power per year to meet 1.5 C Paris Agreement

STELLAR CHEMISTRY
UK mulls extending life of coal power plants

India relaxes environment rules for coal mines, citing heatwave

India to reopen abandoned coal mines as heatwave hits supply

China cuts coal import taxes to zero to ensure energy supply

STELLAR CHEMISTRY
Taiwan's Apple Daily finds buyer after Hong Kong edition shuttered

China, US defence ministers hold talks in Singapore

Chinese blogger goes silent after showing 'tank cake' before Tiananmen anniversary

Hong Kong not becoming 'police state', says city's top cop









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.