Energy News  
EARTH OBSERVATION
The blast that shook the ionosphere
by Staff Writers
Sapporo, Japan (SPX) Mar 18, 2021

The ionospheric disturbance caused by an explosion can be detected by differential ionospheric delays of microwave signals of two carrier frequencies from global navigation satellite system (GNSS) satellites (Bhaskar Kundu, et al. Scientific Reports. February 2, 2021).

A 2020 explosion in Lebanon's port city of Beirut led to a southward-bound, high-velocity atmospheric wave that rivaled ones generated by volcanic eruptions.

Just after 6 p.m. local time (15.00 UTC) on August 4, 2020, more than 2,750 tons worth of unsafely stored ammonium nitrate exploded in Lebanon's port city of Beirut, killing around 200 people, making more than 300,000 temporarily homeless, and leaving a 140-metre-diameter crater in its wake. The blast is considered one of the most powerful non-nuclear, man-made explosions in human history.

Now, calculations by Hokkaido University scientists in Japan have found that the atmospheric wave from the blast led to electron disturbances high in Earth's upper atmosphere. They published their findings in the journal Scientific Reports.

The team of scientists, which included colleagues from the National Institute of Technology Rourkela in India, calculated changes in total electron content in Earth's ionosphere: the part of the atmosphere from around 50 to 965 kilometres in altitude. Natural events like extreme ultraviolet radiation and geomagnetic storms, and man-made activities like nuclear tests, can cause disturbances to the ionosphere's electron content.

"We found that the blast generated a wave that travelled in the ionosphere in a southwards direction at a velocity of around 0.8 kilometres per second," says Hokkaido University Earth and Planetary scientist Kosuke Heki. This is similar to the speed of sound waves travelling through the ionosphere.

The team calculated changes in ionospheric electron content by looking at differences in delays experienced by microwave signals transmitted by GPS satellites to their ground stations. Changes in electron content affect these signals as they pass through the ionosphere and must be regularly taken into consideration to accurately measure GPS positions.

The scientists also compared the magnitude of the ionospheric wave generated by the Beirut blast to similar waves following natural and anthropogenic events. They found that the wave generated by the Beirut blast was slightly larger than a wave generated by the 2004 eruption of Asama Volcano in central Japan, and comparable to ones that followed other recent eruptions on Japanese islands.

The energy of the ionospheric wave generated by the Beirut blast was significantly larger than a more energetic explosion in a Wyoming coal mine in the USA in 1996. The Beirut blast was equivalent to an explosion of 1.1 kilotons of TNT, while the Wyoming explosion was equivalent to 1.5 kilotons of TNT. The total electron content disturbance of the Wyoming explosion was only 1/10 of that caused by the Beirut blast. The scientists believe this was partially due to the Wyoming mine being located in a somewhat protected pit.

Research paper


Related Links
Hokkaido University
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
How much longer will the oxygen-rich atmosphere be sustained on Earth?
Tokyo, Japan (SPX) Mar 08, 2021
Earth's surface environments are highly oxygenated - from the atmosphere to the deepest reaches of the oceans, representing a hallmark of active photosynthetic biosphere. However, the fundamental timescale of the oxygen-rich atmosphere on Earth remains uncertain, particularly for the distant future. Solving this question has great ramifications not only for the future of Earth's biosphere but for the search for life on Earth-like planets beyond the solar system. A new study published in Nature Geo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
When North was South, and South was North

The blast that shook the ionosphere

Bentley Systems to Acquire Seequent

New Chinese satellite measures solar-induced chlorophyll fluorescence

EARTH OBSERVATION
Ten years of safer skies with Europe's other satnav system

China Satellite Navigation Conference to highlight spatiotemporal data

A better way to measure acceleration

Latest progress in China's BeiDou Navigation Satellite System

EARTH OBSERVATION
Development bank seeds $20mn for Amazon protection

Climate change, human activity threatens carbon uptake in Amazon forests

Earth from Space: Amazon rainforest

Maps to improve forest biomass estimates

EARTH OBSERVATION
Genome scalpel invented for industrial microalgae to efficiently turn CO2 into biofuel

Double-duty catalyst generates hydrogen fuel while cleaning up wastewater

Aviation leaders launch sustainable-fuel emissions study on a commercial passenger jet

Huge potential for electronic textiles made with new cellulose thread

EARTH OBSERVATION
New perovskite fabrication method for solar cells paves way to large-scale production

Seeing both sides of light collection

Study finds plants would grow well in solar cell greenhouses

Sunlight Financial secures 2B in solar financing through expanded partnership with Tech CU

EARTH OBSERVATION
TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

Denmark moves forward on North Sea 'energy island'

EARTH OBSERVATION
UK orders inquiry into new coal mine

China economic blueprint signals more coal investment

EU probes Germany's coal phase-out aid

Spanish bank Santander to end coal sector support

EARTH OBSERVATION
Love on the rocks: Inside China's marriage counselling boom

Paris slams China's ambassador for "thug" rant

Patriot games: Hong Kong arts scene shudders as loyalists circle

Bomb blast attack in south China kills four









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.