Energy News  
FARM NEWS
The secret to tripling the number of grains in sorghum and perhaps other staple crops
by Staff Writers
Cold Spring Harbor NY (SPX) Feb 28, 2018

Like many cereal crops, sorghum's grains are produced in clusters of flowers that develop from an elaborately branched structure at the top of the plant called a panicle. Each panicle can produce hundreds of flowers.

A simple genetic modification can triple the grain number of sorghum, a drought-tolerant plant that is an important source of food, animal feed, and biofuel in many parts of the world.

In new research reported in Nature Communications, scientists at Cold Spring Harbor Laboratory (CSHL) have figured out how that genetic change boosts the plant's yield: by lowering the level of a key hormone, generating more flowers and more seeds. Their discovery points toward a strategy for significantly increasing the yield of other grain crops.

Doreen Ware, Ph.D., a CSHL Adjunct Associate Professor and research scientist with USDA's Agricultural Research Service (ARS), led the research, together with ARS colleague Zhanguo Xin, Ph.D.

Their study was focused on high-yield strains of sorghum that were generated several years ago by Dr. Xin. An unknown genetic mutation introduced by chemical mutagenesis - a method used for many decades by breeders and researchers to induce genetic variations in plants - resulted in an increase in the number of grains, i.e., seeds contained within fruits, that each plant produced.

Like many cereal crops, sorghum's grains are produced in clusters of flowers that develop from an elaborately branched structure at the top of the plant called a panicle. Each panicle can produce hundreds of flowers.

There are two types of flowers, and usually only one of these, known as the sessile spikelet (SS), is fertile. The other flower type, called pedicellate spikelets (PS), do not make seeds. In the modified plants Dr. Xin produced, however, both sessile and pedicellate spikelets produced seeds, tripling each plant's grain number.

Ware and her team wanted to understand what caused this dramatic change. By completely sequencing the genomes of the modified plants, they found that the key mutations affected a gene that regulates hormone production. Plants carrying the mutation produce abnormally low levels of a development-regulating hormone called jasmonic acid, particularly during flower development.

Through subsequent experiments, the team learned that jasmonic acid prevents pedicellate spikelets from producing seeds. "So when the plant hormone is low, we get seeds set on every single one of the flowers. But when the plant hormone is high, we have a reduced number of fertile flowers, ending up in a reduced number of seeds," explains Dr. Yinping Jiao of the Ware lab, co-first author on the new paper.

Now that the team has uncovered the biological changes that triple sorghum's grain production, they hope to apply the same strategy to increase grain production in related plants that are vital in the global food supply, such as rice, corn, and wheat. The knowledge will help guide crop improvement through traditional breeding practices as well as approaches that take advantage of genome editing technologies, Ware says.


Related Links
Cold Spring Harbor Laboratory
Farming Today - Suppliers and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FARM NEWS
New approach to improve nitrogen use, enhance yield, and promote flowering in rice
Washington DC (SPX) Feb 27, 2018
Nitrogen fertilizers (applied as nitrate, NO3-, or ammonium, NH4+) improve the amount of grain produced per acre, but nitrogen runoff and volatilization pollute the water and the air. Production of nitrogen fertilizers also uses fossil fuels. The major grain crops (such as rice and wheat) use only about 40% of the applied fertilizer - the rest is lost to the air, water, and soil microbes. Application of nitrogen fertilizers delays flowering, leaving crops vulnerable to late-season cold weather, wh ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FARM NEWS
Tracking the global footprint of industrial fishing

NASA joins international science team in exploring auroral cusp from Norway

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

New partnership aids sustainable growth with earth observations

FARM NEWS
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

FARM NEWS
Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees

Tropical trees use unique method to resist drought

FARM NEWS
Evolution plays many tricks against large-scale bioproduction

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

FARM NEWS
World's first solar fuels reactor for night passes test

Avaada Power commits bllion to Uttar Pradesh solar projects

Why polymer solar cells deserve their place in the sun

New clean energy targets put South Australia on the world map

FARM NEWS
World's first floating wind farm put to the test

New wind farm construction starts in Italy

Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

FARM NEWS
Michigan utility company to go zero coal

Australia won't fund mega Adani mine rail link

New York unveils plans for fossil fuel divestment

French energy company EDF to replace coal in China

FARM NEWS
China's Xi takes another stride in Mao's footsteps

China investigates former top politician

In China's eSport schools students learn it pays to play

China takes over Anbang, prosecutes ex-boss for 'economic crimes'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.