Subscribe free to our newsletters via your
. Farming News .




TIME AND SPACE
Ultra-sensitive sensor detects individual electrons
by Staff Writers
Madrid, Spain (SPX) Apr 28, 2015


A silicon chip was used for the design of the gate sensor. Image courtesy TOLOP. For a larger version of this image please go here.

A Spanish-led team of European researchers at the University of Cambridge has created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has been dubbed the 'gate sensor' and could be applied in quantum computers of the future to read information stored in the charge or spin of a single electron.

In the same Cambridge laboratory in the United Kingdom where the British physicist J.J. Thomson discovered the electron in 1897, European scientists have just developed a new ultra-sensitive electrical-charge sensor capable of detecting the movement of individual electrons.

"The device is much more compact and accurate than previous versions and can detect the electrical charge of a single electron in less than one microsecond," M. Fernando Gonzalez Zalba, leader of this research from the Hitachi Cambridge Laboratory and the Cavendish Laboratory, tells SINC.

Details of the breakthrough have been published in the journal Nature Communications and its authors predict that these types of sensors, dubbed 'gate sensors', will be used in quantum computers of the future to read information stored in the charge or spin of a single electron.

"We have called it a gate sensor because, as well as detecting the movement of individual electrons, the device is able to control its flow as if it were an electronic gate which opens and closes," explains Gonzalez Zalba.

The researchers have demonstrated the possibility of detecting the charge of an electron with their device in approximately one nanosecond, the best value obtained to date for this type of system. This has been achieved by coupling a gate sensor to a silicon nanotransistor where the electrons flow individually.

In general, the electrical current which powers our telephones, fridges and other electrical equipment is made up of electrons: minuscule particles carrying an electrical charge travelling in their trillions and whose collective movement makes these appliances work.

However, this is not the case of the latest cutting-edge devices such as ultra-precise biosensors, single electron transistors, molecular circuits and quantum computers. These represent a new technological sector which bases its electronic functionality on the charge of a single electron, a field in which the new gate sensor can offer its advantages.

M. F. Gonzalez-Zalba, S. Barraud, A. J. Ferguson, A. C. Betz. "Probing the limits of gate-based charge sensing". Nature Communications, 6: 6084, 2015. Doi:10.1038/ncomms7084


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
FECYT - Spanish Foundation for Science and Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
ORNL reports method that takes quantum sensing to new level
Oak Ridge TN (SPX) Apr 27, 2015
Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at the Department of Energy's Oak Ridge National Laboratory. "Quite simply, under certain circumstances, our method enables us to see things we couldn't see before," said Raphael Pooser, co-author of a paper published in the journal Optica. He and Benjamin Lawrie used qua ... read more


TIME AND SPACE
Technologies enable ambitious MMS mission

Egyptian Space Authority Denies Losing Control of EgyptSat Two Satellite

DigitalGlobe offers high resolution satellite map of Aafrica

NASA's ATLAS thermal testing: You're hot, then you're cold

TIME AND SPACE
Neuronal positioning system: A GPS to navigate the brain

NASA Goddard Team Sets High Flying Record with Use of GPS

China's satellite navigation system to expand coverage globally by 2020

17th Beidou navigation satellite functions in orbit

TIME AND SPACE
Partially logged rainforests emitting more carbon than previously thought

Conifer study illustrates twists of evolution

Romanian forests face 'acute' illegal logging problem

Forest paradise re-emerges in Philippine capital

TIME AND SPACE
Engineered softwood could transform pulp, paper and biofuel industries

ORNL contributes to major UN bioenergy and sustainability report

Researchers use plant oils for novel bio-based plastics

Discovery of new plant switch could boost crops, biofuel production

TIME AND SPACE
When mediated by superconductivity, light pushes matter million times more

Europe solar firms accuse China of dodging import duties

Four New Community-Shared Solar Projects Launch in Massachusetts

Research pinpoints defects in popular perovskites

TIME AND SPACE
Germany's E.ON building wind reputation

World-first and new standard achieved in floating lidar as AXYS selects ZephIR 300

Molycorp to supply rare earths for use in Siemens wind turbines

Cornell deploys dual ZephIR lidars for more accurate turbulence study

TIME AND SPACE
21 dead in China coal mine flood: official

India's Adani dismisses banks' Australia coal project snub

China coal mining deaths down in 2014: official

TIME AND SPACE
'Landmark verdict' for abused China wife who faced death

Former China provincial governor tried for graft

China vows crackdown on strippers at funerals

Chinese imperial palace may sue over replica: state media




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.