. Energy News .




.
EPIDEMICS
Unveiling malaria's cloak of invisibility
by Staff Writers
Melbourne, Australia (SPX) Jan 20, 2012

File image.

The discovery by researchers from the Walter and Eliza Hall Institute of a molecule that is key to malaria's 'invisibility cloak' will help to better understand how the parasite causes disease and escapes from the defenses mounted by the immune system.

The research team, led by Professor Alan Cowman from the institute's Infection and Immunity division, has identified one of the crucial molecules that instructs the parasite to employ its invisibility cloak to hide from the immune system, and helps its offspring to remember how to 'make' the cloak.

In research published in the journal Cell Host and Microbe, Professor Cowman and colleagues reveal details about the first molecule found to control the genetic expression of PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1), a protein that is known to be a major cause of disease during malaria infection.

"The molecule that we discovered, named PfSET10, plays an important role in the genetic control of PfEMP1; an essential parasite protein that is used during specific stages of parasite development for its survival," Professor Cowman said.

"This is the first protein that has been found at what we call the 'active' site, where control of the genes that produce PfEMP1 occurs. Knowing the genes involved in the production of PfEMP1 is key to understanding how this parasite escapes the defenses deployed against it by our immune system," he said.

PfEMP1 plays two important roles in malaria infection. It enables the parasite to stick to cells on the internal lining of blood vessels, which prevents the infected cells from being eliminated from the body.

It is also responsible for helping the parasite to escape destruction by the immune system, by varying the genetic code of the PfEMP1 protein so that at least some of the parasites will evade detection.

This variation lends the parasite the 'cloak of invisibility' which makes it difficult for the immune system to detect parasite-infected cells, and is part of the reason a vaccine has remained elusive.

Professor Cowman said identification of the PfSET10 molecule was the first step towards unveiling the way in which the parasite uses PfEMP1 as an invisibility cloak to hide itself from the immune system.

"As we better understand the systems that control how the PfEMP1 protein is encoded and produced by the parasite, including the molecules that are involved in controlling the process, we will be able to produce targeted treatments that would be more effective in preventing malaria infection in the approximately 3 billion people who are at risk of contracting malaria worldwide," he said.

Each year more than 250 million people are infected with malaria and approximately 655,000 people, mostly children, die. Professor Cowman has spent more than 30 years studying Plasmodium falciparum, the most lethal of the four Plasmodium species, with the aim of developing new vaccines and treatments for the disease.

Related Links
Walter and Eliza Hall Institute
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EPIDEMICS
Anti-malaria drug synthesised with the help of oxygen and light
Potsdam, Germany (SPX) Jan 19, 2012
The most effective anti-malaria drug can now be produced inexpensively and in large quantities. This means that it will be possible to provide medication for the 225 million malaria patients in developing countries at an affordable price. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and the Freie Universitat Berlin have developed a very simple process for t ... read more


EPIDEMICS
NASA Sees Repeating La Nina Hitting its Peak

Map project accuses Google users of edits

Half price DMCii 2011 country image pack in New Year sale

A step closer to mapping the Earth in 3D

EPIDEMICS
US Air Force Awards Lockheed Martin Contract for Third and Fourth GPS III Satellites

Raytheon to Develop Mission Critical Launch and Check Solution for Global Positioning System

First Galileo satellite GIOVE-A outlives design life to reach sixth anniversary

USAF Awards Contract to Lockheed Martin for GPS III Launch and Checkout Capability

EPIDEMICS
Amazon Basin shifting to carbon emitter: study

Team finds natural reasons behind nitrogen-rich forests

Indonesia pledges to conserve half of Borneo region

New study evaluates impact of land use activity in the Amazon basin

EPIDEMICS
Findings prove Miscanthus x giganteus has great potential as an alternative energy source

US Woody Biomass Prices Have Dropped the Past Three Years

Bio architecture lab technology converts seaweed to renewable fuels and chemicals

From field to biorefinery: Computer model optimizes biofuel operations

EPIDEMICS
In Solar Cells, Tweaking the Tiniest of Parts Yields Big Jump in Efficiency

A Shade Greener Aim to Supply 35,000 Families with Free Solar by 2015

Green Roofs Embrace Renewable Solar Energy

New Solar Shingle Mount Requires No Trimming

EPIDEMICS
China voices 'deep concern' over US wind tower probe

Power generation is blowing in the wind

Spain's Gamesa wins Chinese wind turbine contract

Mortenson Starts Construction of Rim Rock Wind Project

EPIDEMICS
Gloucester, Yanzhou in giant $8bn coal play: report

Four trapped miners found dead in China: Govt

Five rescued from collapsed Chinese mine

Coal mine collapse traps 12 in China

EPIDEMICS
China villagers win quick concessions after protest

China jails third activist in a month for subversion

Dragon Year spells nightmare for Hong Kong mums

Renowned Chinese painter Fu Baoshi takes on US


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement