. Energy News .




TIME AND SPACE
What if quantum physics worked on a macroscopic level?
by Staff Writers
Geneva, Switzerland (SPX) Jul 29, 2013


File image.

Quantum physics concerns a world of infinitely small things. But for years, researchers from the University of Geneva (UNIGE), Switzerland, have been attempting to observe the properties of quantum physics on a larger scale, even macroscopic. In January 2011, they managed to entangle crystals, therefore surpassing the atomic dimension.

Now, Professor Nicolas Gisin's team has successfully entangled two optic fibers, populated by 500 photons. Unlike previous experiments which were carried out with the fiber optics of one photon, this new feat (which has been published in Nature Physics) begins to answer a fundamental question: can quantum properties survive on a macroscopic level?

For thirty years, physicists have been able to entangle photon pairs (particles of light). Thus, an action on the first particle will have an instant impact on the second, regardless of the distance and the obstacles between them. It occurs as if it were one single photon present at two different places. With this feat in mind, one question remains: can larger elements be entangled on a macroscopic level?

It would seem intuitive to think that the rules of physics that apply at the atomic level would be transferable to the macroscopic world. However, attempts to prove this have not been easy. In fact, when the size of a quantum system increases, it interacts more and more with its surrounding environment, which rapidly destroys its quantum properties. This phenomenon, known as quantum decoherence, is one of the limitations on the capability of macroscopic systems to retain their quantum properties.

From micro to macroscopic
Despite these limitations, and due to technological advances, scientists from UNIGE's Faculty of Science were able to entangle two fiber optics populated by 500 photons, unlike those that were previously entangled to only one photon.

To do this, the team led by Nicolas Gisin, professor in the Physics Section, created an entanglement between two fiber optics on a microscopic level before moving it to the macroscopic level. The entangled state survived the transition to a larger-scale world and the phenomenon could even be observed with the traditional means of detection, i.e. practically with the naked eye.

In order to verify that the entanglement survived in the macroscopic world, the physicists reconverted the phenomenon at the microscopic level.

This first large-scale experiment paves the way for many applications that quantum physics offers. The entanglement at the macroscopic level is one of the main research areas in the field, and we hope to entangle increasingly large objects in the years to come," said Professor Gisin.

.


Related Links
Universite de Geneve
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TIME AND SPACE
Elementary Physics in a Single Molecule
Karlsruhe, Germany (SPX) Jul 29, 2013
A team of physicists has succeeded in performing an extraordinary experiment: They demonstrated how magnetism that generally manifests itself by a force between two magnetized objects acts within a single molecule. This discovery is of high significance to fundamental research and provides scientists with a new tool to better understand magnetism as an elementary phenomenon of physics. The ... read more


TIME AND SPACE
GOES-R Satellite Magnetometer Boom Deployment Successful

NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

First high-resolution national carbon map - Panama

TIME AND SPACE
Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

Lockheed Martin Delivers Antenna Assemblies For Integration On First GPS III Satellite

GPS III satellite antenna assemblies ready for installation

TIME AND SPACE
China passes laws to protect country's rare and ancient trees

Mini-monsters of the forest floor

Computer can infer rules of the forest

Boreal Forests in Alaska Becoming More Flammable

TIME AND SPACE
Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

TIME AND SPACE
The best of two worlds: Solar hydrogen production breakthrough

KYOCERA and Century Tokyo To Operate Utility-Scale Solar Power Plants

EU, China settle solar panel dispute

UCLA researchers double efficiency of novel solar cell

TIME AND SPACE
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

TIME AND SPACE
Greenpeace says Chinese coal company exploiting water

Major China coal plant drains lake, wells: Greenpeace

Troubled U.K. Coal enters administration in restructuring move

Report: Alpha Australian coal project is 'stranded'

TIME AND SPACE
China's Bo Xilai accused of $4m graft: media

China airport bomber formally arrested: lawyer

Work on world's tallest building stopped in China: media

China charges Bo Xilai with corruption, abuse of power




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement