Energy News
FARM NEWS
World's largest database of weeds lets scientists peer into the past, and future, of global agriculture
stock illustration only
World's largest database of weeds lets scientists peer into the past, and future, of global agriculture
by Staff Writers for Sheffield News
Sheffield UK (SPX) Jan 24, 2024

A new database of weeds that can help scientists understand how traditional agricultural systems were managed throughout history, could also provide insights into how global trends like the climate crisis could affect the resilience of our modern day food systems.

The database is the culmination of 30 years of collaborative research from archaeologists and ecologists working at the Universities of Sheffield and Oxford. It catalogues nearly 1000 species of weeds growing in traditional agricultural regimes in Europe, Western Asia and North Africa.

The open access resource, created and published by academics continuing the research project through the Oxford University Research Archive, offers researchers worldwide the opportunity to compare archaeobotanical data with 'traditional' farming systems.

The database catalogues the functional traits of weeds growing amongst arable cereal and pulse crops for all 928 weed species. The aim of the project was to be able to compare past and present farming systems through the weeds that grow alongside arable crops.

Plant ecologist, John Hodgson, who worked at what is now the University of Sheffield's School of Biosciences, was involved in the research from the 1990s. He said: "The data gives archaeologists and plant ecologists a way to understand the past and predict the future together.

"In modern day agricultural environments, where crops are micromanaged and everything that is not wanted is removed, it can be difficult to monitor long term changes to environments and plant species. So by investigating historical weed populations, instead of the crops, the data offers researchers a unique way to see what has been lost and gained over the ages.

"Analysis of the data allows us to look at what kind of plants have the ability to adapt to, or may be vulnerable to changing conditions in their habitats. The robust data from this years-long research offers the potential for understanding the resilience of food systems in a time of climate change, drought and degradation of land, and the exploration of a narrative for issues the world is facing today in terms of global food production."

The data models contained in the new package look to understand how low input (extensive) farming and high input (intensive) arable agriculture compare, which offers a free resource for academics to understand the nature of crop cultivation at field research sites, including how much labour people were investing in agricultural practices at a given time and what this may say about the sites and their inhabitants.

Glynis Jones, Emeritus Professor of Archaeology at the University of Sheffield, commented that the data has uncovered new insights about the history of agriculture and changed our understanding of the development of farming globally. She said: "The aim of the project was to use relatively simple functional attributes of different plant species, that can be measured more quickly than expensive and time-consuming experiments, to give us some entirely new insights into historical sites.

"We tend to assume agriculture started off in a non-intensive fashion, and grew progressively more intensive over the ages. However we have found Neolithic and Bronze Age sites that challenge this belief, small patches of land that were farmed intensively, using practices such as fertilising, watering and weeding crops like wheat or barley; places where there was a lot of human effort being put into the growing of crops.

"We also found that sites from the Iron Age and Roman period that encompassed more extensive areas were less intensively cultivated, so more crops may be grown but they would not be farmed as intensively as before as they covered larger areas. Whereas modern agriculture is characterised by encompassing both intensive and extensive agricultural practices.

"Our research has revealed to us the trends in arable agriculture over time and how farming practices have varied in different environments."

Those involved with the database say it forms a key research resource for academics working in ecology and archaeobotany. It is the culmination of 30 years of research from current and previous academics at the University of Sheffield and those now at the University of Oxford, including Professor of Environmental Archaeology, Mike Charles and Professor of European Archaeology, Amy Bogaard who led the work to create the new R package 'WeedEco' which is open access for all.

Elizabeth Stroud, from the University of Oxford, who led development of the new R package WeedEco, said: "The new publication for the first time makes these datasets and models accessible to anyone interested in comparative study of past and present arable farming. This means that anyone from developer-funded or university-based archaeology, or from the plant science and ecology side, can engage directly with this research and conduct their own analyses. The models we are releasing in the R package have featured prominently in recent farming-related research projects in the University of Oxford's School of Archaeology, such as FeedSax and AgricUrb. This work has shed new light on how a range of different societies through time produced their staple crops."

Amy Bogaard, from the University of Oxford and senior author on the latest study, notes: "The new R package and the newly published dataset of functional traits for nearly 1000 weed species is a testimony to the dedication of everyone involved, and above all to the vision and commitment of colleagues at the University of Sheffield, where the functional ecological approach, and the connection to archaeobotany, originated. This is very much a joint celebration with colleagues in Sheffield and the School of Archaeology in Oxford."

Research Report:Seeing the fields through the weeds: introducing the WeedEco R package for comparing past and present arable farming systems using functional weed ecology

Related Links
University of Sheffield
Farming Today - Suppliers and Technology

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
FARM NEWS
Why European farmers are up in arms
Paris (AFP) Jan 23, 2024
The European Commission is due on Thursday to begin "strategic" talks with farmers' federations, agri-business firms, NGOs and experts on ways to assuage the ire on farms in several countries. On the agenda are key issues including farming incomes, sustainable agricultural practices, technological innovations and competitiveness, which will be discussed in advance by the European Union's agriculture ministers at their meeting in Brussels on Tuesday. The initiative was not confirmed until late l ... read more

FARM NEWS
CNSA launches Gaofen 5-01A satellite for advanced earth observation

Capella Space and Floodbase unite to enhance Parametric Flood Insurance with Advanced SAR Imagery

CNSA announces full operation of Gaofen 5 01A, boosting environmental and climate monitoring

Satellite data sheds light on Guangdong's climate extremes in recent study

FARM NEWS
Study reveals non-isotropic nature of tropospheric delays in GNSS

Viasat Leads Historic UK SBAS Flight Trial, Showcasing Advanced GPS Capabilities

GMV reinforces satellite expertise with new Galileo Operations Center in Madrid

Airbus presents first flight model structure for Galileo Second Generation

FARM NEWS
China-funded nickel hub stoking deforestation on Indonesia island: report

Pacific kelp forests are far older that we thought

Soil fungi may help explain the global gradient in forest diversity

Deforestation in Brazilian Amazon halved in 2023

FARM NEWS
Synthetic aviation fuel has yet to take off in Europe: study

Ants help reveal why sourcing different plants for eco fuels is crucial for biodiversity

Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging

Nigerians look to biofuel as cost of cooking gas soars

FARM NEWS
EagleView's Geospatial Data Transforms Solar Industry with Rapid, Detailed Bidding

Revolution in low-light imaging with integrated photovoltaic and photodetector organic device

Breakthrough in tin-based perovskite solar cells achieves 11 percent power conversion efficiency

Novel Cathode Interlayer Boosts Performance of Tin-Lead Perovskite Solar Cells

FARM NEWS
Leaf-shaped generators create electricity from the wind and rain

European offshore wind enjoys record year in 2023

Danish firm to build huge wind farm off UK

UK unveils massive news windfarm investment by UAE, German firms

FARM NEWS
King coal set to lose crown for electricity production: IEA

China mining accident death toll rises to 13

At least 10 dead in China mining accident: state media

German emissions at 70-year low as coal use drops

FARM NEWS
Shanghai's elderly seek romance at Ikea lonely hearts club

Hit Chinese TV series rekindles sidelined Shanghainese dialect

China appoints son of ex-president Hu Jintao to senior govt role

Beijing says US stance on Nauru diplomatic switch a 'smear' on China

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.