![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Copenhagen, Denmark (SPX) Jan 27, 2022
Imagine taking your favorite treat - a Mars bar or cream puff - and beaming it with X-rays to map out what makes it so delicious. Then, picture being able to transfer some of those magnificent qualities and tastes to healthier, more sustainable products. Such a fantasy could become reality if the Small Angle X-ray Scattering method is used, known as SAXS. By using X-rays, SAXS makes it possible to study food at the nanolevel, where a nanometer equals one millionth of a millimeter. SAXS has yet to be widely deployed for food research, but the the University of Copenhagen's Department of Food Science is working on the method and has acquired a new Nano-inXider instrument that uses X-ray radiation to examine foodstuffs, among other things. The method has great potential in relation to the foods of the future, says Jacob Kirkensgaard, an associate professor at the University of Copenhagen's Department of Food Science, as well as at the Niels Bohr Institute. Kirkensgaard uses SAXS equipment in his research, where he collaborates with the Department of Pharmacy and Lund University. "SAXS can be used to optimize the development of foodstuffs in relation to their taste, texture and nutritional content. For example, when we look at the structure and function of foods at the nanolevel, we could improve their design so that they break down in such a way that as many nutrients as possible are absorbed. In this way, we can help prevent obesity and improve health," he says.
Can make plant proteins easier to eat Together with Jacob Kirkensgaard, she used the SAXS method to study how milk proteins behave in various sustainable processing methods. "Our knowledge of how milk components give a special taste, mouthfeel and texture can be used for research into plant-based proteins. Because, if we can map out exactly what it is that makes milk nourish us, feel soft in the mouth and taste sweet and salty, we could copy those properties into new plant-based products that are easier on our climate, which would help get more people to consume them," she explains. The two researchers have already met with great interest from Danish industry in relation to how the SAXS method can make it easier to produce tasty plant proteins. "Recently, we met with a range of large Danish food producers and ingredient suppliers. They are particularly curious about how they can make delicious plant-based foods, without compromising taste and structure," says Jacob Kirkensgaard. He underscores that the development of new sustainable and innovative foodstuffs depends on our being able to understand and analyse the structure of individual products. "As such, the University of Copenhagen's commitment to the SAXS method is interesting. We certainly hope that industry embraces it," concludes Jacob Kirkensgaard.
![]() ![]() Fickle sunshine slows down Rubisco and limits photosynthetic productivity of crops Urbana IL (SPX) Jan 21, 2022 All of the carbon in our bodies, in food, and in the entire biosphere, results from the assimilation of carbon dioxide in photosynthesis by a single enzyme, known to biologists as Rubisco. Not surprisingly, given its importance, this protein is the most abundant in the world. Researchers from Lancaster University are working to improve the sustainable productivity of key crops in sub-Saharan Africa have discovered a new imperfection in the way Rubisco functions in cowpea and believe this imperfection is ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |