. Energy News .




FARM NEWS
Scarecrow gene might trigger big boost in food production
by Staff Writers
Ithaca NY (SPX) Jan 30, 2013


If C4 photosynthesis is successfully transferred to C3 plants through genetic engineering, farmers could grow wheat and rice in hotter, dryer environments with less fertilizer, while possibly increasing yields by half.

With projections of 9.5 billion people by 2050, humanity faces the challenge of feeding modern diets to additional mouths while using the same amounts of water, fertilizer and arable land as today.

Cornell University researchers have taken a leap toward meeting those needs by discovering a gene that could lead to new varieties of staple crops with 50 percent higher yields.

The gene, called Scarecrow, is the first discovered to control a special leaf structure, known as Kranz anatomy, which leads to more efficient photosynthesis. Plants photosynthesize using one of two methods: C3, a less efficient, ancient method found in most plants, including wheat and rice; and C4, a more efficient adaptation employed by grasses, maize, sorghum and sugarcane that is better suited to drought, intense sunlight, heat and low nitrogen.

"Researchers have been trying to find the underlying genetics of Kranz anatomy so we can engineer it into C3 crops," said Thomas Slewinski, lead author of a paper that appeared online in the journal Plant and Cell Physiology. Slewinski is a postdoctoral researcher in the lab of senior author Robert Turgeon, professor of plant biology.

The finding "provides a clue as to how this whole anatomical key is regulated," said Turgeon. "There's still a lot to be learned, but now the barn door is open and you are going to see people working on this Scarecrow pathway."

The promise of transferring C4 mechanisms into C3 plants has been fervently pursued and funded on a global scale for decades, he added.

If C4 photosynthesis is successfully transferred to C3 plants through genetic engineering, farmers could grow wheat and rice in hotter, dryer environments with less fertilizer, while possibly increasing yields by half, the researchers said.

C3 photosynthesis originated at a time in Earth's history when the atmosphere had a high proportion of carbon dioxide. C4 plants have independently evolved from C3 plants some 60 times at different times and places.

The C4 adaptation involves Kranz anatomy in the leaves, which includes a layer of special bundle sheath cells surrounding the veins and an outer layer of cells called mesophyll. Bundle sheath cells and mesophyll cells cooperate in a two-step version of photosynthesis, using different kinds of chloroplasts.

By looking closely at plant evolution and anatomy, Slewinski recognized that the bundle sheath cells in leaves of C4 plants were similar to endodermal cells that surrounded vascular tissue in roots and stems.

Slewinski suspected that if C4 leaves shared endodermal genes with roots and stems, the genetics that controlled those cell types may also be shared. Slewinski looked for experimental maize lines with mutant Scarecrow genes, which he knew governed endodermal cells in roots.

When the researchers grew those plants, they first identified problems in the roots, then checked for abnormalities in the bundle sheath. They found that the leaves of Scarecrow mutants had abnormal and proliferated bundle sheath cells and irregular veins.

In all plants, an enzyme called RuBisCo facilitates a reaction that captures carbon dioxide from the air, the first step in producing sucrose, the energy-rich product of photosynthesis that powers the plant. But in C3 plants RuBisCo also facilitates a competing reaction with oxygen, creating a byproduct that has to be degraded, at a cost of about 30-40 percent overall efficiency.

In C4 plants, carbon dioxide fixation takes place in two stages. The first step occurs in the mesophyll, and the product of this reaction is shuttled to the bundle sheath for the RuBisCo step. The RuBisCo step is very efficient because in the bundle sheath cells, the oxygen concentration is low and the carbon dioxide concentration is high. This eliminates the problem of the competing oxygen reaction, making the plant far more efficient.

.


Related Links
Cornell University
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





FARM NEWS
New Zealand's milk safe, government says
Auckland, New Zealand (UPI) Jan 28, 2013
New Zealand's dairy products are safe, the government said, after traces of a chemical residue were detected in some of the country's milk products. At issue is the chemical dicyandiamide, or DCD. "The detection of these small DCD residues poses no food safety risk. DCD itself is not poisonous," Ministry for Primary Industries Director General Wayne McNee said in a statement Satu ... read more


FARM NEWS
New tools enable high-res observations from anywhere with internet access

Internet age navigation drives economies: studies

RapidEye Commits to Data Continuity; Discusses System Health and Life Span

Pleiades 1B captures its first images using e2v sensors

FARM NEWS
Galileo's search and rescue system passes first space test

AFRL Selects Surrey Satellite US to Evaluate Small Satellite Approach to GPS

Lockheed Martin Awarded Contract to Sustain Ground Station for Global Positioning System

China promotes Beidou technology on transport vehicles

FARM NEWS
Dartmouth research offers new control strategies for bipolar bark beetles

Brazil to inventory Amazon rainforest trees

Civilians fell rare Syrian trees for firewood

Prosecutors take issue with Brazil's new forestry code

FARM NEWS
Marginal Lands Are Prime Fuel Source for Alternative Energy

Wind in the willows boosts biofuel production

Fuel Choices and How They Affect Car Insurance

US Secretary of Agriculture Tom Vilsack visits Renmatix for commissioning of plant to sugar BioFlex Conversion Unit

FARM NEWS
Photon Energy Investments Expands to North America

Volkswagen Chattanooga Powers Up Largest Solar Park in Tennessee

Black silicon can take efficiency of solar cells to new levels

Juwi Pushes Forward Thai Energy Transition with Large-Scale Solar

FARM NEWS
Japan plans world's largest wind farm

China revs up wind power amid challenges

Algonquin Power Buys 109 MW Shady Oaks Wind Power Facility

British group pans wind farm compensation

FARM NEWS
China mine blast kills 17: state media

FARM NEWS
China blogger sentenced for Bo joke denied payout

Tibetans in India launch drive against China

China tries two Tibetan self-immolation 'inciters': media

Protestors march against Hong Kong leader




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement